共查询到19条相似文献,搜索用时 125 毫秒
1.
给出了一种新的滚动轴承故障诊断方法,将小波包和EMD方法、AR模型法相结合,实测信号分析表明,此方法不但正确检测到了轴承的状态,而且优于EMD和AR模型法. 相似文献
2.
3.
针对滚动轴承不同振动信号各个频带的能量不同的特点,提出一种基于小波包熵(WPE)和ISODATA的集合型故障诊断方法(WPE-ISODATA)。文中对滚动轴承振动信号进行采样;利用小波包提取滚动轴承振动信号的能量特征并归一化运算,将归一化的能量特征作为振动信号的概率分布进行信息熵运算,提取滚动轴承振动信号特征;以信息熵作为ISODATA聚类算法的输入进行故障辨识。滚动轴承实验结果表明:基于小波包熵和ISODATA的集合型故障诊断方法鲁棒性好,可靠性高。 相似文献
4.
为了在滚动轴承故障诊断中获得更好的效果,详细研究了小波包分析的原理,提出了基于小波包分析的滚动轴承特征向量提取算法,并利用这一算法对齿轮箱的滚动轴承在正常工况下的振动信号和故障工况下的振动信号进行了10层小波包分解处理.将处理后的图像和相同信号傅里叶变换后的频谱图进行了比较,证明本算法能够较好地分辨出滚动轴承的工作状况是否正常,具有一定的理论价值和现实意义. 相似文献
5.
基于小波包变换的滚动轴承故障诊断 总被引:1,自引:0,他引:1
针对故障轴承振动信号能量集中与调制的特点,提出了一种基于小波包能量法与Hilbert变换的滚动轴承故障诊断方法。使用小波包变换对振动信号进行分解、重构及能量计算,并应用Hilbert变换对能量集中频段的重构信号进行解调和频谱分析,提取故障特征频率。同时针对诊断过程中故障特征参数依靠人工计算的问题,提出故障特征参数自动提取方法。实际的滚动轴承实验数据的处理和分析结果表明,该诊断方法能够准确、快速地识别滚动轴承表面损伤的故障模式。 相似文献
6.
基于小波包和SOM神经网络的车辆滚动轴承故障诊断 总被引:1,自引:0,他引:1
以车辆滚动轴承故障诊断模型为基础,针对其轴承的特点,提出了一种小波包分析和SOM神经网络相结合的故障诊断方法。将该方法应用于车辆滚动轴承的故障诊断中,经过大量实测数据的分析与验证,能够有效地诊断出轴承的故障类型,为旋转机械的动态监测和故障诊断提供了新的参考,具有重要的理论和实际工程应用价值。 相似文献
7.
基于分形和小波包理论的滚动轴承故障诊断 总被引:1,自引:0,他引:1
为了提高滚动轴承故障分形诊断的准确性,利用仿真信号对不同数据长度和不同信噪比下信号的盒维数和关联维数的差异进行对比,发现两种分形维对不同信号具有不同适应性;利用基于小波包分解能量图的特征信号强化技术,突出含噪轴承振动信号的故障信息特征,并对消噪前后振动信号盒维数进行计算和对比。分析结果表明,分形盒维数比关联维数更适用于分析含噪较重的信号;滚动轴承故障振动信号盒维数小于正常信号盒维数;相比原始信号,经小波包提取后不同类型故障振动信号的盒维数区分更为明显,诊断结果更加准确直观。 相似文献
8.
基于EMD分解与小波包的滚动轴承故障诊断 总被引:1,自引:0,他引:1
针对滚动轴承故障信号分析中的问题,提出了将Hilbert-Huang变换和小波包分析相结合的滚动轴承故障诊断新方法,实测信号分析表明,该方法能有效地对滚动轴承故障信号进行检测. 相似文献
9.
10.
11.
滚动轴承是旋转机械的重要典型零部件,本文将自回归(AR)模型应用于滚动轴承故障诊断,对其时域信号建立自回归模型,计算出其AR功率谱,并和经典功率谱进行比较,进而判断轴承的工作状态。实验结果表明,该方法能简单有效地识别滚动轴承故障。 相似文献
12.
基于小波分析的变速箱滚动轴承故障诊断方法的研究 总被引:7,自引:0,他引:7
利用小波分析技术将滚动轴承故障振动信号分解到时-频空间,定义了滚动轴承故障振动信号能量分布函数S(t) ,提出了能量分布函数S(t) 细化谱诊断变速箱滚动轴承故障的分析方法。在某自行火炮的变速箱上进行了一系列滚动轴承故障诊断实验,实验结果验证了能量分布函数S(t) 细化谱诊断变速箱滚动轴承故障的有效性 相似文献
13.
小波包算法在滚动轴承的在线故障诊断中的应用 总被引:8,自引:0,他引:8
对小波变换的理论进行了简要的阐述,并介绍了小波包理论。指出了在强噪声的背景下小波包变换的算法对于瞬态信号提取的有效性,表明了小波包变换对信号的去噪声,滤波等方面具有广泛的前景。并以五套6307号轴承为例进行了诊断,结果与实际情况相一致,说明该算法十分适合于滚动轴承的在线监测与故障诊断。 相似文献
14.
15.
滚动轴承故障特征的时间—小波能量谱提取方法 总被引:14,自引:1,他引:14
振动信号中的周期性冲击现象是诊断滚动轴承各元件故障的重要依据之一,针对滚动轴承故障特征,在小波变换理论基础上提出一种时间—小波能量谱信号处理方法,它能够有效地提取出振动信号中冲击成分的时域和频域特征。利用时间—小波能量谱方法分析正常、外圈故障、内圈故障、滚珠故障等四种状态下滚动轴承的振动信号,并与传统的包络解调分析方法进行对比分析。时间—小波能量谱不仅可以有效提取出冲击特征明显的滚动轴承外圈故障,还能提取出内圈、滚珠等信号特征微弱的滚动轴承故障,而包络解调分析方法只能提取出外圈故障特征而不能提取出滚珠故障、内圈故障特征。结果表明,时间—小波能量普比包络解调分析方法更能有效地提取出振动信号中的冲击信号成分。 相似文献
16.
17.
基于小波包能量谱齿轮振动信号的分析与故障诊断 总被引:5,自引:0,他引:5
小波包是继小波分析之后提出的一种新型的多尺度分析方法,解决了小波分析在高频部分分辨率差的缺点,体现了比小波分析更好的处理效果.测试了齿轮传动系统在几种不同故障类型下的振动信号,利用小波包变换的分解和重构算法,有效地提取出齿轮故障特征信号,得到试验结果.通过比较时域分析、频域分析和小波包分析对齿轮振动信号进行的特征提取,... 相似文献
18.
小波分析在滚动轴承故障诊断中的应用 总被引:1,自引:0,他引:1
本文阐述了基于小波分析的快速傅里叶变换应用于轴承故障诊断的原理,介绍了该方法在减速器滚动轴承故障诊断中的应用.给出了几种频谱图. 相似文献
19.
针对平稳自回归模型无法准确描述滚动轴承振动信号的非平稳性,提出一种结合小波包分解与自回归模型的故障特征提取方法,以提取能准确反映轴承运行状态的特征向量。首先,通过小波包变换对滚动轴承运行时产生的非平稳振动信号进行分解,得到一系列刻画原始信号特征的系数;然后,利用自相关算法对各系数建立自回归模型,并将自回归模型的参数作为特征向量;最后,采用支持向量机分类器对提取的特征向量进行故障分类,从而实现滚动轴承的智能故障诊断。仿真结果表明该方法的有效性。 相似文献