共查询到17条相似文献,搜索用时 58 毫秒
1.
基于黄原胶XG在水溶液中形成棒状双螺旋结构聚合体,研制了非交联型植物胶XG-1压裂液,并给出了压裂液配方。研究结果表明,XG-1稠化剂用量为0.5%时,压裂液表观黏度超过70 m Pa·s,其表观黏度随着温度升高而降低,50~100℃时体系表观黏度大于40 m Pa·s,p H值在2~12时表观黏度均保持在60 m Pa·s左右,分别采用氯化钾、氯化钙盐水配制压裂液,20%氯化钾、20%氯化钙溶液配制的压裂液表观黏度均大于40 m Pa·s,体系具有良好的耐盐性能;压裂液黏度大于40 m Pa·s时,支撑剂沉降速度大于0.014 mm/s,破胶液黏度大于5 m Pa·s,表界面张力与瓜胶压裂液类似,增稠剂浓度为0.5%的压裂液破胶残渣含量为90 mg/L,远低于同浓度瓜胶压裂液残渣含量,现场应用效果良好。该压裂液可用于中低渗、天然裂缝不发育储层的压裂改造。 相似文献
2.
有机钛交联的改性魔芋胶压裂液配方研究 总被引:2,自引:0,他引:2
对有机钛(B-1)交联的改性魔芋胶(GT9-1)压裂液进行了研究,提出了具有缓交性能、适用于80℃左右井温的加砂压裂液配方,考察了该配方压裂液的性能,讨论了配方组成及高价金属离子对压裂液成胶性能的影响。研究结果表明,用有机钛交联的改性魔芋胶压裂液配方简单,悬砂能力强,视粘度适中,具有抗温、抗剪切等性能,可用于80℃左右井温的大型加砂压裂施工。 相似文献
3.
4.
羟丙基香豆胶-有机锆交联冻胶压裂液的性能 总被引:3,自引:0,他引:3
实验研究了香豆胶与环氧丙烷在碱催化下反应生成的羟丙基香豆胶的表面活性及其与有机锆生成的耐热剪切的冻胶压裂液的应用性能。羟丙基香豆胶具有弱表面活性,水溶液浓度由0.1%增至0.6%时,表面张力和界面张力略为降低,分别由65.31降至58.22 mN/m,由24.79降至18.35 mN/m。当交联比在100∶0.2~100∶0.5时或pH值在9.0~10.0时,形成的羟丙基香豆胶/锆冻胶黏度高(≥300 mPa.s),有弹性,热剪切稳定性好。交联比100∶0.4的0.7%羟丙基香豆胶/锆冻胶在130~160℃下均为假塑性流体,n值在0.396~0.425范围。在150℃和160℃高温下,该冻胶连续剪切(170 s-1)120 min,仍保有较高黏度(~125和~95 mPa.s),滤失量和滤失速率较小,控制液体滤失能力较好。该冻胶抗盐钙性能好,加入5.0%、6.0%KCl时,25℃表观黏度(412 mPa.s)保持率分别为90.3%、76.2%,加入0.4、0.5、0.6 g/L CaCl2时分别为87.9%、75.5%、53.2%。加入过硫酸铵的冻胶在150℃或160℃放置20 h以上可完全破胶。图2表6参9。 相似文献
5.
硼交联羟丙基瓜尔胶压裂液回收再用可行性研究 总被引:5,自引:0,他引:5
探讨了羟丙基瓜尔胶/硼冻胶压裂液回收再用的可行性。分析了该压裂液冻胶在无通用破胶剂情况下的非降解性破胶机理,控制因素为pH值和温度,破胶液黏度最低可达基液水平。基于一种有机硼交联HPG冻胶压裂液的实验数据及文献资料,讨论了升温,使用缓释酸及稀释3种非降解性破胶方法。①根据压裂过程中裂缝附近温度场分布设计压裂液,携砂液耐温性只需达到裂缝内的较低温度,地层温度恢复后其黏度将大幅降低;使用产气生热剂可提高裂缝温度。②加入设定量未指明组成的缓释酸使实验压裂液120℃黏度降至<40 mPa.s,补加NaOH后黏度维持>200 mPa.s近3小时。③压裂液与地层水等量混合后破胶,黏度~20 mPa.s,复合清水压裂工艺即基于此原理。不同泵注阶段示踪剂产出曲线表明,影响压裂液返排的因素不只是黏度,某些未破胶压裂液的返排率反而很高;如使用方法适当,缓释酸破胶的返排率可以达到通用氧化型破胶剂破胶的相同水平。国外实践表明,重复使用低分子量瓜尔胶压裂液可提高压裂效果。图7参9。 相似文献
6.
高温低伤害的有机硼锆CZB-03交联羟丙基瓜尔胶压裂液研究 总被引:3,自引:0,他引:3
实验研究了有机硼锆交联剂CZB 0 3(有机锆交联剂OZ 1用一种复合吸附抑制剂处理后与等质量的有机硼交联剂OB 2 0 0的复配物 )与HPG的交联性能、冻胶耐温性和伤害性 ,实验体系为加有 0 .3%复合添加剂CA 0 3的0 .6 %HPG/CZB 0 3压裂液。该体系的最佳pH值为 9~ 11,适宜交联比为 10 0∶0 .3~ 0 .4 ,在温度≤ 4 0℃时延缓交联时间为 2~ 4min。该体系的耐温性高于 16 0℃ ,在 16 0℃、170s-1剪切 12 0min ,粘度保持 10 0mPa·s以上。该体系的滤失控制性能较好 ,加入 1%降滤失剂ZJ 1可使 16 0℃、3.5MPa滤失系数C3 (m/min0 .5)由 9.19× 10 -4降到6 .98× 10 -4。加入 0 .0 4 %专用破胶剂EB 0 3,在 16 0℃放置 2h后破胶液粘度为 5 .2mPa·s。CZB 0 3压裂液对支撑裂缝导流能力的伤害远小于OZ 1压裂液 ,略高于OB 2 0 0压裂液 ,在室温和 4 0~ 70MPa下 ,CZB 0 3,OZ 1,OB 2 0 0交联HPG压裂液的伤害率分别在 13.8%~ 16 .1% ,4 9.8%~ 5 1.2 % ,9.1%~ 11.7% ,平均值分别为 14 .7% ,5 0 .4 % ,10 .6 %。图 3表 3参 2。 相似文献
7.
8.
用普通粉状压裂用植物胶制成了延迟溶胀、在港胀过程逐渐释放光机硼交联剂的压裂液稠化剂。用这延迟溶胀稠化剂、普通植物胶稠化剂及pH调节剂、温度稳定剂等添加剂配制的压裂液,交联时间延迟不少于5-6man,可泵性好,耐温性能大幅度提高,在150℃、170_s(-1)条件下剪切100min,粘度仍在100mPa·s以上。该压裂液已成功地使用于井温138-155℃的油井压裂施工.增产效果良好。 相似文献
9.
一种新型低伤害合成聚合物冻胶压裂液体系 总被引:5,自引:2,他引:5
报道了题示压裂液体系的性能。合成聚合物稠化剂FA-200不含水不溶物,水溶液呈中性,被能造成酸性环境(pH值4~6)的交联剂AC-12交联而形成冻胶。依次增加稠化剂用量(0.25%~0.6%)和交联剂用量(0.5%~0.8%),加入1.0%乳化剂和1.0%助排剂,得到了适用温度为50℃、80℃、100℃、120℃、140℃的5个配方,在相应温度下剪切50~90min保留粘度大于150、88、98、945、3mPa.s,在变剪切之后粘度能恢复。该体系破胶剂为过硫酸铵,其加量随温度升高而减少,破胶彻底,破胶液粘度低。0.5%稠化剂压裂液破胶后残渣含量为125.6mg/L。该体系压裂液特别适用于碱敏性地层和CO2泡沫压裂。图5表2参2。 相似文献
10.
压裂液用高温延缓交联剂CL-9的研制 总被引:1,自引:0,他引:1
所报道的压裂液用有机硼交联剂CL-9,由硼酸盐、多羟基醛、LB-2多元醇及碱反应制得,外观均一,长时间存放不析出固体物,适用温度90~145℃,使用量0.40%~0.50%。报道了含2.0%KCl、0.08%~0.15%NaOH、0.10%破乳助排剂的CL-9(0.45%)/HPG(0.50%)压裂液的性能。交联时间随pH升高(7~14)而延长,随温度升高(20~70℃)而缩短,pH=14时常温交联时间为5.2 min,60℃时为1 min。高温下(110~130℃)在170 1/s剪切10 min后压裂液黏度基本上保持稳定,高温下(100~130℃)经500 1/s剪切10 min后,170 1/s黏度均大于210mPa.s,其保持率随温度升高而下降,100℃下为82.3%,130℃下为66.0%。压裂液滤失性能良好,滤失系数和初滤失量在90℃为5.35×10-4m/min1/2和0,120℃下为7.32×10-4m/min1/2和1.21×10-4cm3/cm2。该压裂液已在中原油田7口井压裂中使用,施工成功率100%,油井压裂后增产效果较好。图4表2参3。 相似文献
11.
低分子量合成聚合物压裂液研究 总被引:13,自引:0,他引:13
研发了以低分子量合成聚合物PY-1为稠化剂的交联冻胶压裂液。PY-1含有酰胺基团,增稠能力强,0.35%水溶液的黏度为27 mPa.s。以可生成多核羟桥络离子的两性金属盐NT-2为交联剂。实验压裂液的基液为0.35%PY-1+0.3%助交联剂+0.3%防膨剂+0.5%助排剂,交联液为1.5%NT-2+0.15%交联协调剂,聚交比100∶8。该压裂液在80℃、170 s-1剪切90分钟仍保持黏度~100 mPa.s;在70℃1、70 s-1剪切30和60分钟时,n′和K′值变化不很大;70℃滤失系数为8.35×10-4m/min1/2;70℃破胶后实测残渣含量仅22.7 mg/L;加入0.06%APS后,70℃、1小时破胶液黏度2.65 mPa.s;当地温为60~70℃时,APS的加量为0.06%~0.15%;破胶液表面张力25.14 mN/m,界面张力2.54 mN/m;破胶液对于标准黏土的防膨率为68.3%。简介了用PY-1压裂液在长庆低渗油田井深2000 m、地温70℃的2口新井实施压裂的良好结果。图1表4参3。 相似文献
12.
二氧化碳泡沫压裂液研究与应用 总被引:7,自引:1,他引:7
简介了泡沫压裂液发展现状及影响CO2泡沫压裂液性能的主要因素。基于添加剂的研制(起泡剂FL 36,酸性交联剂AC 8)和筛选,得到了CO2泡沫压裂液的典型配方:0 6%HPG 1 0%FL 36 1 0%粘土稳定剂 0 1%破乳助排剂 0 06%过硫酸铵 1 5? 8,测定了该配方的各项性能。基液粘度75mPa·s(25℃,170s-1),pH值7 0;泡沫半衰期300min(25℃,0 1MPa),pH值4 0。泡沫干度(泡沫质量)为70%和60%的CO2泡沫压裂液在40~50min内可维持粘度>80mPa·s。在流动回路装置上测得泡沫干度增大时粘度增大,在高干度下形成气泡细小均匀的稳定泡沫。滤失系数在2 9×10-4~4 2×10-4范围。对岩心渗透率的伤害率为13 6%(22支岩心平均值),而水基压裂液的伤害率高达60%。在70℃数小时完全破胶。大粒径(0 9mm)陶粒在干度40%和70%的CO2泡沫压裂液中沉降速度<0 06cm/s。常温、1Hz下G′和G″随干度增大而增大,且G″>G′。江苏油田低渗油藏3口井实施CO2泡沫压裂取得了明显增油效果。表4参3。 相似文献
13.
高温延缓型有机硼OB-200交联压裂液的性能与应用 总被引:5,自引:2,他引:5
报道了实验考察高温延缓型有机硼交联剂OB 200在5g/L羟丙基瓜尔胶水基压裂液中的各项性能及其影响因素的结果,简述了在7口井上应用该压裂液的情况。OB 200/HPG压裂液在pH=11.5、温度5~35(40)℃时交联时间长达4.7~5.6min;不加破胶剂的压裂液在温度115~135℃时,8h内可完全破胶液化,讨论了OB 200体系的自动破胶机制;在135℃、170s-1条件下剪切2h,压裂液粘度>120mPa·s;高速(500s-1)剪切后,在低速下(80s-1)粘度可恢复到初始值的94.5%(95℃下)或70.0%(135℃下);在95~135℃滤失小,滤失系数为6.93×10-4~9.81×10-4m/(min)1/2;残渣含量低,135℃下破胶20h后为319mg/L,而对比硼酸盐压裂液(90℃)和有机钛压裂液(135℃)分别为364和457mg/L;在人造岩心上测得渗透率伤害率在5.74%~9.66%,平均7.32%,而对比有机钛压裂液为24.07%~29.98%,平均27.09%。在中原油田桥口和户部寨地区7口井2706~3769m井段用该压裂液压裂,施工成功率100%,获得了油、气增产效果。图5表4参3。 相似文献
14.
聚合物增韧脲醛树脂封堵剂的研究与应用 总被引:3,自引:0,他引:3
所报道的封堵剂用于封堵高渗透出水孔道,层间窜槽,套管漏失,射孔是底水,可用于60-110℃的油水井,固化时间在1-16h之间可调。该封堵剂为脲素,甲醛,固化组化A和B(二者反应生成路易斯酸)及聚合的(通常为HAPM,增韧剂)水溶液。实验考察了固化组分A和B加量,聚合物加量及温度(80℃,90℃)对固化时间的影响,A和B加量对固化物抗压强度 岩心突破压力的影响。适当配方的固化物强韧,在抗压强度测定中发生变形,外力撤除后可恢复。该封堵剂在中原油田已应用20多井次,效果良好。详细介绍了用该封堵剂封堵1口油井的套管漏失,1口水井的这外窜槽和套管漏失的情况和效果。 相似文献
15.
CJ2-3型可回收低分子量瓜尔胶压裂液的开发 总被引:2,自引:1,他引:2
低分子量瓜尔胶CJ2-3分子链上引入了亲水基团,水溶性好,水溶液30℃[η]值0.842 L/g,按3组K,α求得分子量3.86×105~5.93×105。CJ2-3压裂液以硼酸盐作交联剂,交联剂用量大于常规瓜尔胶类压裂液。0.35%压裂液基液在pH=8.5时黏度仅12 mPa.s,形成的压裂液在热剪切测试中(170 s-1)黏度几乎立即产生,温度达到设定值后黏度保持不变,且60℃、70℃黏度相差不大(在100 mPa.s上下),即该压裂液流变曲线变化平稳,温度敏感性小,易控制,携砂能力强,压裂施工设计难度较小。加入破胶剂(过硫酸铵)可使该压裂液破胶,破胶液黏度符合返排要求。室内模拟破胶实验结果表明,压裂施工完成后,CJ2-3压裂液与低pH值的支撑裂缝表面接触时pH值下降,pH≤8.0时破胶,破胶液黏度接近基液,其中的CJ2-3不发生降解。CJ2-3压裂液滤失控制性能好,滤失量小,滤饼可在地层中自行破胶,易清除。长庆油田的3口油井用CJ2-3压裂液压裂,未加破胶剂的1口井,压裂液返排率达92.9%,返排压裂液在30℃放置7天,黏度下降30.8%。返排压裂液中补加各种添加剂得到的回收压裂液,流变性和其他性能与原始压裂液一致。图5表8参4。 相似文献
16.
火山岩深气层压裂液体系研究与应用 总被引:3,自引:0,他引:3
大庆徐家围子断陷深层火山岩储气层,最高温度超过170℃,最大厚度超过120 m,压裂施工中单层加砂量超过100 m3,使用现有压裂设备施工时间为2.5~3.0小时,要求水基压裂液具有优异的各项性能。为此研发了适用于120~170℃不同温度的压裂液,基本配方如下:HPG 0.55%~0.65%,表面活性剂ZP-1 0.10%~0.15%,有机钛有机硼高温交联剂0.25%~0.30%,过硫酸盐破胶剂0.002%~0.003%,其他组分有粘土稳定剂、冻胶稳定剂、温度稳定剂、交联控制剂、降滤失剂等。介绍了150℃配方压裂液的性能:150℃、170 s-1剪切4.0小时粘度>80 mPa.s;初滤失量3.13×10-4m3/m2,滤失系数4.59×10-4m/min1/2;破胶液粘度5.6 mPa.s,表面张力30.96 mN/m,界面张力(与煤油)1.83 mN/m;通过交联控制,现场沿程摩阻降低了30%。2002年以来使用该体系压裂液在大庆12口深气井共24层进行压裂,最大加砂量为100 m3,均获得成功;在吉林2口深勘探气井压裂也获得成功。图1参3。 相似文献
17.
报道了在30~100℃的不同温度下凝胶化时间为3~45h的HPAM/脲醛预缩聚物地下成胶体系的基本配方共12个,所用催化剂有重铬酸钠+氯化铵(A)和过硫酸铵+乌洛托品(B)两种。适用于60℃的配方60A 1和60A 2的成胶时间,随配制水矿化度的增大(500~1.0×105mg/L)由18h和8h分别增加到76h和34h,形成的凝胶粘度超过1.3×104mPa·s。长99mm、水测渗透率1.33μm2的人造均质岩心,在注入60A 1配方物2PV并充分凝胶化后,突破压力为8.16MPa,残余阻力系数为1000,对水的封堵率达99.9%;60A 2在岩心中充分凝胶化的时间为3d;由2个岩心封堵前后水相和油相(煤油)渗透率的变化求得,60A 2的堵水率为99.10%和99.03%,堵油率为12.94%和13.01%,表现出了相当好的封堵选择性;水测渗透率分别为1.33,0.458,0.193μm2的并联三岩心组,水驱至残余油,注入60A 2配方物2PV并反应10h后注水驱油,注水压力由0.31MPa升至0.98MPa,原来不吸水的低、中渗岩心的流量分别达到0.14和0.23mL/min,高渗岩心的流量由0.43mL/min降至0.06mL/min,表明含残余油的高渗岩心在很大程度上被封堵;水测渗透率分别为0.193,0.456,1.33μm2的3个岩心串连,总长76.4cm的纵向非均质岩心,水驱至残余油,注入60A 2配方物0.2PV并反应10h后注水驱油,注入压力大幅升高,含水率下降,采收率 相似文献