首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
针对轧制差厚板成形过程中的破裂、起皱以及厚度过渡区移动缺陷,将充液拉深技术引入差厚板盒形件的成形过程,建立了差厚板盒形件有限元模型,进行了差厚板盒形件充液拉深成形仿真,推导了临界液池压力的解析公式.对比分析了压边力、液池压力以及液池压力加载路径对差厚板最大厚度减薄率以及厚度过渡区中心位移量的影响.结果表明,压边力和液池...  相似文献   

2.
针对轧制差厚板零件在传统拉深成形工艺中易产生成形缺陷的问题,将充液拉深工艺引入轧制差厚板筒形件的成形中,并通过数值模拟技术对轧制差厚板充液拉深成形过程进行了研究。分析了液池压力对轧制差厚板成形性能的影响,并通过正交试验结合灰色理论讨论了不同工艺参数对轧制差厚板成形性能的影响规律。研究表明:充液拉深成形工艺相对于传统拉深成形工艺能够获取成形性能更好的轧制差厚板。随着液池压力的增加,轧制差厚板筒形件最大厚度减薄率呈现先减小后增大的趋势,而过渡区最大移动量逐渐减小,采用10 MPa的液池压力能够获取较小的最大厚度减薄率,并将过渡区最大移动量限制在较低水平。摩擦因数、压边力以及液池压力对于轧制差厚板充液拉深成形性能的影响程度是依次降低的,采用灰色关联分析获取的优化工艺参数组合可以提高轧制差厚板的成形性能。  相似文献   

3.
《锻压技术》2021,46(10):83-87
为了进一步提高轧制差厚板的成形性能,将充液拉深工艺引入轧制差厚板的成形中,并重点考虑预胀形工艺的影响。通过数值模拟技术对轧制差厚板筒形件充液拉深成形过程进行了研究,确定了合理的液体压力加载路径,讨论了不同预胀压力作用下轧制差厚板的厚度过渡区的偏移以及厚度减薄情况,最终得到合适的预胀压力数值。研究认为:随着预胀压力的增大,轧制差厚板的最大厚度减薄率呈现先减小后增大的趋势,厚度过渡区偏移量则呈现不断减小的趋势;预胀压力为1.00 MPa时,能够获取较小的最大厚度减薄率,并将厚度过渡区偏移量抑制在较低的水平,从而改善轧制差厚板的成形性能。  相似文献   

4.
主要研究了差厚板过渡区位置变化对盒形件成形性能的影响。使用Abaqus有限元软件对不同过渡区位置的差厚板进行了拉深模拟,得出应力、应变等值线图,分析了过渡区在不同位置的差厚板盒形件成形性能的变化。结果表明:随着过渡区位置的改变,差厚板的成形性能发生相应改变,过渡区位置向薄区偏移,主要变形区域分布在过渡区和厚区,成形性能提高,减薄率减小;过渡区位置向厚区偏移,主要变形区域分布在过渡区和薄区,成形性能降低,减薄率增大。  相似文献   

5.
应用电子背散射衍射(EBSD)技术对CR340钢轧制差厚板各厚度区晶粒尺寸、取向差分布和织构状态进行了检测,并进行了轧制差厚板的拉深试验,研究了差厚板微观结构对其拉深成形性能的影响。结果表明,差厚板薄区、过渡区和厚区的晶粒平均尺寸依次递减,而过渡区的晶粒尺寸最不均匀,织构均匀性最差;差厚板厚区晶粒细小,组织均匀性好,拉深时变形偏向厚区;{111}uvw和{876}uvw是提高冲压性能的有利织构,厚区各织构强度比更为合理,因而各向异性Δr绝对值更小,拥有比薄区较低的制耳率。  相似文献   

6.
《模具工业》2015,(7):14-18
以8 mm厚Q345板料的弯曲为对象,研究工艺参数与模具参数的变化对板料弯曲成形性能及最终弯曲角的影响。建立厚板弯曲成形有限元仿真计算模型,确定适合板料弯曲成形的有限元数值模拟参数并分析板料弯曲过程中的应力情况以及回弹后的残留应力分布。通过正交试验,对比分析各参数对板料弯曲结果的影响,确定了对板料弯曲中弯曲角度的因素影响由强到弱为上模圆弧半径、上模下压量、下模圆角半径、下模开口。  相似文献   

7.
李高盛  余伟  蔡庆伍 《轧钢》2018,35(3):13-18
采用有限元方法建立了厚板轧制的刚塑性有限元模型,以研究在厚板轧制过程中引入厚度方向上的温度梯度对钢板芯部变形的影响。并与传统均温轧制进行对比,研究了差温轧制对钢板头部变形与宽展的影响,以及在两种工艺下钢板厚度方向上应变分布的变化,分析了差温轧制条件下应变、压下量与板坯厚度之间的关系。结果表明,温度梯度轧制有利于增加坯料芯部变形,差温轧制钢板头部呈现单鼓形,而均温轧制钢板头部为双鼓形。均温轧制中心与表面宽展差值为差温轧制这一数值的16倍。随着板厚减薄,道次压下量增大,差温轧制钢板内部应变逐渐提高。但当道次压下率和板厚过大或过小时,差温轧制对中心应变的改善作用不明显。  相似文献   

8.
基于离散化思路建立变厚度轧制的厚度控制系统;在实验四辊轧机上进行了单厚度过渡区的22MnB5热成形钢变厚度板轧制,对轧后的板材进行模拟退火试验,使用光学显微镜、扫描显微镜观察及拉伸试验分析了变厚度板退火后不同厚度位置的组织和力学性能。结果表明,在50 mm变厚度区中:厚度偏差为0.08 mm,长度偏差为0.3 mm。变厚度板在退火快速冷却过程中不同厚度区存在较大的温度差,薄区温度跟随性差,其他退火过程的温度跟随性好,偏差不大;不同厚度区的力学性能区别小;快速冷却退火后的组织为层状珠光体+铁素体;结合工艺可行性并有效保证组织性能控制,建议根据厚区的厚度来制定退火工艺,并采用低冷却速度的罩式退火或半连续退火。  相似文献   

9.
本文采用非线性有限元软件ABAQUS对带钢平整轧制过程进行了二维建模,仿真分析了带钢屈服强度、厚度、应变硬化率与平整轧制后带钢厚度方向上纵向残余应力分布之间的关系。结果表明,入口带钢的屈服强度与厚度对平整轧制后带钢厚度方向上的纵向残余应力分布有较大影响;而带钢的应变硬化率对平整轧制后带钢厚度方向上的纵向残余应力分布影响较小。  相似文献   

10.
为了掌握差厚板的力学性能,在不同厚度钢板的0°,45°和90°方向取样进行拉伸试验,并对试验参数与板厚的关系曲线进行分析,绘制了应力、应变与厚度的三维曲面,并建立了相应的数学模型。利用上述试验数据,在ABAQUS有限元软件中建立差厚板的单向拉伸模型,根据有限元模拟的差厚板单向拉伸过程进行实际拉伸试验。结果表明,差厚板不同区域的力学性能差异较大;通过在应力、应变与厚度的三维曲面上插值,即可得到差厚板0°,45°和90°方向上任意厚度的力学性能参数;差厚板单向拉伸试验与模拟的缩颈位置均在试样薄区,试验与模拟的力-位移曲线吻合良好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号