首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
An amperometric biosensor for the determination of ethanol has been constructed. It comprises a multiwalled carbon nanotubes (MWNTs) conduit, a Nafion binder, and an alcohol dehydrogenase (ADH) function. The measurement of ethanol is based on the signal produced by beta-nicotinamide adenine dinucleotide (NADH), the product of the enzymatic reaction. The MWNTs are cylindrical with an outer diameter in the range 40-60 nm, an inner diameter in the range 2-5 nm, and a length of up to several micrometers. The homogeneity of the resulting nanobiocomposite film was characterized by field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM). The performance of the MWNTs-Nafion-ADH nanobiocomposite modified glassy carbon electrode was examined using cyclic voltammetry and amperometry in presence of NADH and in the presence of ethanol. The electrocatalytic activity of MWNTs towards the oxidation of NADH has allowed an effective low-potential amperometric determination of ethanol. In the case of 6 mgmL(-1) ADH, the MWNTs-Nafion-ADH nanobiocomposite film displayed a sensitivity of 830 nAmM(-1), a linear range up to 0.1 mM, a detection limit of 3 microM, and a response time of about 4 s.  相似文献   

2.
Investigations are reported regarding the direct electrochemical performance of glucose oxidase (GOD) immobilized on a film of multiwalled carbon nanotube-alumina-coated silica (MWCNT-ACS). The surface morphology of the GOD/MWCNT-ACS nanobiocomposite is characterized by scanning electron microscopy. In cyclic voltammetric response, the immobilized GOD displays a pair of well-defined redox peaks, with a formal potential (E°′) of ? 0.466 V versus Ag/AgCl in a 0.1 M phosphate buffer solution (pH 7.5) at a scan rate of 0.05 V s? 1; also the electrochemical response indicates a surface-controlled electrode process. The dependence of formal potential on solution pH indicates that the direct electron transfer reaction of GOD is a reversible two-electron coupled with a two-proton electrochemical reaction process. The glucose biosensor based on the GOD/MWCNT-ACS nanobiocomposite shows a sensitivity of 0.127 A M? 1 cm? 2 and an apparent Michaelis–Menten constant of 0.5 mM. Furthermore, the prepared biosensor exhibits excellent anti-interference ability to the commonly co-existed uric acid and ascorbic acid.  相似文献   

3.
采用循环伏安法在玻碳电极上制备了{H3[PMo12O40]/Pt/PAMAM}复合膜,用X射线光电子能谱(XPS)、扫描电子显微镜(SEM)、电子能谱技术(EDS)、原子力显微镜(AFM)和循环伏安法(CV)研究了膜的组成、形貌及其对甲醇的电催化氧化活性。结果表明,Pt纳米粒子在PAMAM基底上分散均匀;最外层沉积H3[PMo12O40]后,与相同条件下制备的Pt/PAMAM膜相比,{H3[PMo12O40]/Pt/PAMAM}复合膜修饰电极对甲醇的氧化有更强的电催化活性。  相似文献   

4.
Gold nanoparticles (NPs) with 10-50 nm in diameter were synthesized on nitrogen incorporated tetrahedral amorphous carbon (ta-C:N) thin film electrode by electrodeposition. The deposition and nucleation processes of Au on ta-C:N surface were investigated by cyclic voltammetry and chronoamperometry. The morphology of Au NPs was characterized by scanned electron microscopy. The electrochemical properties of Au NPs modified ta-C:N (ta-C:N/Au) electrode and its ability to sense glucose were investigated by voltammetric and amperometric measurements. The potentiostatic current-time transients showed a progressive nucleation process and diffusion growth of Au on the surface of ta-C:N film according to the Scharifker-Hills model. The Au NPs acted as microelectrodes improved the electron transfer and electrocatalytic oxidation of glucose on ta-C:N electrode. The ta-C:N/Au electrode exhibited fast current response, a linear detection range of glucose from 0.5 to 25 mM and a detection limit of 120 microM, which hinted its potential application as a glucose biosensor.  相似文献   

5.
Platinum nanoparticles with a diameter of 2-3 nm were prepared and used in combination with single-wall carbon nanotubes (SWCNTs) for fabricating electrochemical sensors with remarkably improved sensitivity toward hydrogen peroxide. Nafion, a perfluorosulfonated polymer, was used to solubilize SWCNTs and also displayed strong interactions with Pt nanoparticles to form a network that connected Pt nanoparticles to the electrode surface. TEM and AFM micrographs illustrated the deposition of Pt nanoparticles on carbon nanotubes whereas cyclic voltammetry confirmed an electrical contact through SWCNTs between Pt nanoparticles and the glassy carbon (GC) or carbon fiber backing. With glucose oxidase (GOx) as an enzyme model, we constructed a GC or carbon fiber microelectrode-based biosensor that responds even more sensitively to glucose than the GC/GOx electrode modified by Pt nanoparticles or CNTs alone. The response time and detection limit (S/N = 3) of this biosensor was determined to be 3 s and 0.5 microM, respectively.  相似文献   

6.
A novel amperometric glucose biosensor based on multilayer films containing chitosan, multi-wall carbon nanotubes (MWCNTs) and glucose oxidase (GOD) was developed. MWCNTs were solubilized in chitosan (Chit-MWCNTs) used to interact with GOD. Poly (allylamine) (PAA) and polyvinylsulfuric acid potassium salt (PVS) were alternately deposited on the cleaned Pt electrode surface ((PVS/PAA)3/Pt). The (PVS/PAA)3/Pt electrode was alternately immersed in Chit-MWCNTs and GOD to assemble different layers of multilayer films. PBS washing was applied at the end of each assembly deposition for dissociating the weak adsorption. Micrographs of MWCNTs were obtained by scanning electron microscope, and properties of the resulting biosensors were measured by electrochemical measurements. Among the resulting biosensors, the biosensor based on eight layers of multilayer films was best. The resulting biosensor was able to efficiently monitor glucose, with the response time within 8 s, a detection limit of 21 μM estimated at a signal-to-noise ratio of 3, a linear range of 1–10 mM, the sensitivity of 0.45 μA/mM, and well stability. The study can provide a feasible simple approach on developing a new immobilization matrix for biosensors and surface functionalization.  相似文献   

7.
This study describes the development of a novel bimetal (Fe and Cu)-grown hierarchical web of carbon micro-nanofiber-based electrode for biosensor applications, in particular to detect glucose in liquids. Carbon nanofibers (CNFs) are grown on activated carbon microfibers (ACFs) by chemical vapor deposition (CVD) using Cu and Fe as the metal catalysts. The transition metal-fiber composite is used as the working electrode of a biosensor applied to detect glucose in liquids. In such a bi-nanometal-grown multi-scale web of ACF/CNF, Cu nanoparticles adhere to the ACF-surface, whereas Fe nanoparticles used to catalyze the growth of nanofibers attach to the CNF tips. By ultrasonication, Fe nanoparticles are dislodged from the tips of the CNFs. Glucose oxidase (GOx) is subsequently immobilized on the tips by adsorption. The dispersion of Cu nanoparticles at the substrate surface results in increased conductivity, facilitating electron transfer from the glucose solution to the ACF surface during the enzymatic reaction with glucose. The prepared Cu-ACF/CNF/GOx electrode is characterized for various surface and physicochemical properties by different analytical techniques, including scanning electron microscopy (SEM), electron dispersive X-ray analysis (EDX), Fourier-transform infrared spectroscopy (FTIR), BET surface area analysis, and transmission electron microscopy (TEM). The electrochemical tests show that the prepared electrode has fast response current, electrochemical stability, and high electron transfer rate, corroborated by CV and calibration curves. The prepared transition metal-based carbon electrode in this study is cost-effective, simple to develop, and has a stable immobilization matrix for enzymes.  相似文献   

8.
Novel nanobiocomposites multiwalled carbon nanotube-poly(vinyl alcohol)-glucose oxidase have been successfully prepared by a simple solution-evaporation method. The morphology and performance of the multiwalled carbon nanotube-poly(vinyl alcohol)-glucose oxidase film have been characterized by atomic force microscopy, cyclic voltammetry, and amperometry. The multiwalled carbon nanotube and glucose oxidase were observed to be homogeneously dispersed throughout the poly(vinyl alcohol) matrix. When compared with bare glassy carbon electrode, the sensitivity to hydrogen peroxide is greatly improved by about 115 times at multiwalled carbon nanotubepoly(vinyl alcohol) modified glassy carbon electrode. The glucose biosensor sensitivity was strongly influenced by the glucose oxidase concentration within the multiwalled carbon nanotube-poly(vinyl alcohol)-glucose oxidase composite.  相似文献   

9.
A novel amperometric glucose biosensor based on the nanocomposites of multi-wall carbon nanotubes (CNT) coated with polyaniline (PANI) and dendrimer-encapsulated Pt nanoparticles (Pt-DENs) is prepared. CNT coated with protonated PANI is in situ synthesized and Pt-DENs is absorbed on PANI/CNT composite surface by self-assembly method. Then Glucose oxidase (GOx) is crosslink-immobilizated onto Pt-DENs/PANI/CNT composite film. The results show that the fabricated GOx/Pt-DENs/PANI/CNT electrode exhibits excellent response performance to glucose, such as low detection limit (0.5 µM), wide linear range (1 µM–12 mM), short response time (about 5 s), high sensitivity (42.0 µA mM? 1 cm? 2) and stability (83% remains after 3 weeks).  相似文献   

10.
An amperometric glucose biosensor was prepared using polyaniline (PANI) and chitosan-coupled carbon nanotubes (CS-CNTs) as the signal amplifiers and glucose oxidase (GOD) as the glucose detector on a gold electrode (the Au-g-PANI-c-(CS-CNTs)-GOD biosensor). The PANI layer was prepared via oxidative graft polymerization of aniline from the gold electrode surface premodified by self-assembled monolayer of 4-aminothiophenol. CS-CNTs were covalently coupled to the PANI-modified gold substrate using glutaradehyde as a bifunctional linker. GOD was then covalently bonded to the pendant hydroxyl groups of chitosan using 1,4-carbonyldiimidazole as the bifunctional linker. The surface functionalization processes were ascertained by X-ray photoelectron spectroscopy (XPS) analyses. The field emission scanning electron microscopy (FESEM) images of the Au-g-PANI-c-(CS-CNTs) electrode revealed the formation of a three-dimensional surface network structure. The electrode could thus provide a more spatially biocompatible microenvironment to enhance the amount and biocatalytic activity of the immobilized enzyme and to better mediate the electron transfer. The resulting Au-g-PANI-c-(CS-CNTs)-GOD biosensor exhibited a linear response to glucose in the concentration range of 1-20 mM, good sensitivity (21 μA/(mM·cm(2))), good reproducibility, and retention of >80% of the initial response current after 2 months of storage.  相似文献   

11.
A glucose biosensor was fabricated by electrodepositing chitosan (CS)-glucose oxidase(GOD) biocomposite onto the stainless steel needle electrode (SSN electrode) modified by Pt–Pb nanoparticles (Pt–Pb/SSN electrode). Firstly, Pt–Pb nanoparticles were deposited onto the SSN electrode and then CS-GOD biocomposite was co-electrodeposited onto the Pt–Pb/SSN electrode in a mixed solution containing p-benzoquinone (p-BQ), CS and GOD. The electrochemical results showed that the Pt–Pb nanoparticles can accelerate the electron transfer and improve the effective surface area of the SSN electrode. As a result, the detection range of the proposed biosensor was from 0.03 to 9 mM with a current sensitivity of 0.4485 μA/mM and a response time of 15 s. The Michaelis constant value was calculated to be 4.9837 mM. The cell test results indicated that the electrodes have a low cytotoxicity. This work provided a suitable technology for the fabrication of the needle-type glucose biosensor.  相似文献   

12.
The electrocatalytic reduction of hydrogen peroxide on thioalted graphene oxide (t-GO) covalent bonded to palladium nanoparticles was used as the basis of an H2O2 biosensor. Poly (diallydimethylammonium chloride)-coated t-GO-Pd on glassy carbon electrodes was easily and quickly prepared and gave sensitive measurements of H2O2 concentration. The Pd nanoparticles covalently bonded to the thiolated graphene oxide were characterized by transmission electron microscopy, X-ray photoelectron spectroscopy, and energy dispersive X-ray spectroscopy. Comparable results for H2O2 determination were obtained from cyclic voltammetric and amperometric measurements. The proposed H2O2 biosensor exhibited a wide linear range of 10 microM to 10 mM, and a low detection limit of 0.22 microM (S/N = 3), at an applied potential of -0.1 V by the amperometric method.  相似文献   

13.
Platinum nanoparticles (Ptnano) were used in combination with multi-walled carbon nanotubes (MWCNTs) for fabricating sensitivity-enhanced electrochemical l-lactate biosensor. The composite film of MWCNTs and Ptnano was dispersed on the surface of the glassy carbon electrode (GCE). l-lactate oxidase (LOD) was immobilized on MWCNTs/Ptnano/GCE surface by adsorption. The resulting LOD/MWCNTs/Ptnano electrode was covered by a thin layer of sol–gel to avoid the loss of LOD in determination and to improve the anti-interferent ability. Moreover, the sol–gel microenviroment contributes to both intensified stability and permselectivity. The cyclic voltammetry results indicated that MWCNTs/Ptnano catalyst displayed a higher performance than MWCNTs. Under the optimized conditions of applied potential 0.5 V, pH 6.4, room temperature, the proposed biosensor showed a large determination range (0.2–2.0 mM), a short response time (within 5 s), a high sensitivity (6.36 μA mM− 1) and good stability (90% remains after 4 weeks). The fabricated biosensor had practically good selectivity against interferences. The results for whole blood samples measured by the present biosensor showed a good agreement with those measured by spectrophotometric method.  相似文献   

14.
A procedure is described that provides for electrochemically mediated deposition of enzyme and a polymer layer permselective for endogenous electroactive species. Electrodeposition was first employed for the direct immobilization of glucose oxidase to produce a uniform, thin, and compact film on a Pt electrode. Electropolymerization of phenol was then employed to form an anti-interference and protective polyphenol film within the enzyme layer. In addition, a stability-reinforcing membrane derived from (3-aminopropyl)trimethoxysilane was constructed by electrochemically assisted cross-linking. This hybrid film outside the enzyme layer contributed to the improved stability and permselectivity. The resulting glucose sensor was characterized by a short response time (<4 s), high sensitivity (1200 nA/mM x cm2), low interference from endogenous electroactive species, and working lifetime of more than 50 days.  相似文献   

15.
The biosensors based on ENFETs for direct glucose concentration analysis have been fabricated by introducing dendrimer encapsulated Pt nanoparticles and glucose oxidase (GOx) via a layer-by-layer self-assembly method. The free amine groups located on each poly(amidoamine) dendrimer molecule were exploited to immobilize enzyme through covalent attachment. Depending on metal nanoparticles within dendrimers and biocompatibility of dendrimers, the fabricated glucose sensitive ENFET shows obviously enhanced sensitivity and extended lifetime compared with the conventional ones. The fabricated sensor has a linear range of 0.25–2.0 mM, and a detection limit of ca. 0.15 mM. The influence of buffer concentration, ionic strength and pH was discussed. The biosensor also has good stability, which response could be used for detecting of glucose samples at intervals for at least 1 month when it stored in dry state at 4 °C.  相似文献   

16.
We report a novel approach to fabrication of an amperometric biosensor with an enzyme, a plasma-polymerized film (PPF), and carbon nanotubes (CNTs). The CNTs were grown directly on an island-patterned Co/Ti/Cr layer on a glass substrate by microwave plasma enhanced chemical vapor deposition. The as-grown CNTs were subsequently treated by nitrogen plasma, which changed the surface from hydrophobic to hydrophilic in order to obtain an electrochemical contact between the CNTs and enzymes. A glucose oxidase (GOx) enzyme was then adsorbed onto the CNT surface and directly treated with acetonitrile plasma to overcoat the GOx layer with a PPF. This fabrication process provides a robust design of CNT-based enzyme biosensor, because of all processes are dry except the procedure for enzyme immobilization. The main novelty of the present methodology lies in the PPF and/or plasma processes. The optimized glucose biosensor revealed a high sensitivity of 38 μA mM(-1) cm(-2), a broad linear dynamic range of 0.25-19 mM (correlation coefficient of 0.994), selectivity toward an interferent (ascorbic acid), and a fast response time of 7 s. The background current was much smaller in magnitude than the current due to 10 mM glucose response. The low limit of detection was 34 μM (S/N = 3). All results strongly suggest that a plasma-polymerized process can provide a new platform for CNT-based biosensor design.  相似文献   

17.
A disposable glucose biosensor based on glucose oxidase immobilized on tetrathiafulvalene-tetracyanoquinodimethane (ITF-TCNQ) conducting organic salt synthesized in situ onto an overoxidized poly(pyrrole) (PPy(ox).) film is described. The TIF-TCNQ crystals grow through the nonconducting polypyrrole film (ensuring electrical connection to the underlying Pt electrode) and emerge from the film forming a treelike structure. The PPy(ox) film prevents the interfering substances from reaching the electrode surface. The sensor behavior can be modeled by assuming a direct reoxidation of the enzyme at the surface of the TTF-TCNQ crystals. A heterogeneous rate constant around 10(-6) - 10(-7) cm s(-1) has been estimated. The biosensor is nearly oxygen- and interference-free and when integrated in a flow injection system displays a remarkable sensitivity (70 nA/mM) and stability.  相似文献   

18.
A method for the highly sensitive determination of acetylcholine (ACh) and choline (Ch) that employs a graphite-like carbon film electrode containing 6.5% platinum (Pt) nanoparticles was developed for use as a detector in microbore liquid chromatography (LC) with a postcolumn enzyme reactor. The film electrode was prepared by RF cosputtering carbon and Pt, which requires only a one-step formation process. This method can control the Pt content of the film at a relatively low deposition temperature (below 200 degrees C). The average size of the Pt nanoparticles was 2.5 nm. The film electrode showed excellent electrocatalytic activity, high sensitivity, and negligible baseline drift when detecting hydrogen peroxide. The electrode was modified with glucose oxidase and responded rapidly to glucose with a much more stable baseline current than at a Pt bulk electrode based sensor. Therefore, it is appropriate to employ the electrode to detect trace amounts of biomolecules, such as neurotransmitters and hormones combined with various oxidase enzymes. We used the electrode as a detector for microbore LC and observed a low detection limit of 2.5 and 2.3 fmol (10-microL injection) for ACh and Ch, respectively, which is approximately 1 order of magnitude lower than that of a Pt bulk electrode.  相似文献   

19.
The transition of Pt from a nanoparticle to a film on SiO2 particles modified by the sputtering system with barrel-type powder sample holder (the barrel sputtering system). X-ray diffraction (XRD) and scanning electron microscopy (SEM) measurements reveal that the Pt nanoparticles grow in size with an increase in the duration of sputter deposition. The morphology of Pt changes from highly dispersed nanoparticles to a worm-like structure followed by a continuous Pt film, depending on the amount of Pt modified. Transmission electron microscopy (TEM) measurements reveal that the thin Pt film in the worm-like structure has a uniform thickness of approximately 2.6 nm, indicating film growth in a two-dimensional mode followed by an island mode.  相似文献   

20.
The nanosized silver particles are used to dope into the sol–gel film to prepare a biosensor. The horseradish peroxidase (HRP), mediator methylene blue (MB), nanosized silver particles and sol–gel solution are mixed and coated on the surface of glass carbon (GC) electrode to get the biosensor. The silver nanoparticles in the sol–gel film can adsorb the enzyme molecules and improve the sol–gel film conductivity. The biosensor has a high sensitivity, quickly response to H2O2 and good stability. The biosensor responds to H2O2 in the linear range from 1 μM to 1 mM. The detection limit was down to 0.4 μM when the signal to noise ratio is 3. The apparent Michaelis-Menten constant of the biosensor to H2O2 was estimated to be 1.2 mM, showing a high affinity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号