首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
这是我们教育丛书中的一篇论文:在学校和学院中真空科学和技术的理论和实践。 本文第Ⅱ部分研究放气率的测量方法。详细说明所选用材料的测试结果。对用于超高真空的材料,本文还探讨一些减少放气率的方法。 1.序言 在任一个无漏气并达到平衡的真空系统中,压强决定于系统总的放气量和泵的抽速。 P = Q/S托这里Q是总放气量(托·升/秒), S是抽速, (升/秒)。严格地讲,这个公式只有对系统中一个独立的部分才是正确的。在这部分中分子流是主要的。从表面放出的气体进入这部分体积之中而后又由于抽气而流出这个体积。对于有大的温差存在的情况,例…  相似文献   

2.
电子显微镜(TEM)真空系统的真空度要求在6.67×10~(-3)Pa 以上。为了改善真空性能,H—800型电子显微镜首先将不锈钢衬管插入电子束通道,以减小抽气体积,而将其它部件置于真空之外后,又减少了放气源。另外,H—800设置了两个抽气系统,分别使用了三台抽速为160l/min 机械泵(RP1,2,3)和两台抽速为570l/S 的油扩散泵。所以,该真空系统的真空度可达1.33×10~(-4)Pa 或更高。  相似文献   

3.
用一个有效抽速为24升/秒的高真空泵对一段2.5米长、截面约为50×180准矩形的国产LD2 型铝合金管,模拟电子贮存环束流管道进行了抽气实验。经过150℃、24小时烘烤和B—A规的充分 除气,真空度达到5 × 10-10托、放气率相当于 10-13托·升/秒·厘米2。管虽经挤压成形,但内表面光 洁度并不高,而且只采用了一般常规的清洗方法。实验结果表明,铝合金的放气率相当低。我们推荐它 作为超高真空容器材料时,在有条件就地烘烤150℃、24小时的情况下,可选取5×10-13托·升/秒·厘米2的放气率。当然,对于专门为电子贮存环加工和处理的铝合金管,可达到更低的放气率。本文将扼要地 介绍这项工作的某些细节。  相似文献   

4.
一、引言在超高真空和极高真空系统中,结构材料的放气,直接影响到真空系统的抽气性能。材料放气,一般来自材料内部气体的扩散释放和材料表面吸附气体的解吸两个方面。一般金属材料,它们内部含有的气体(氢)量要比其表面吸附的气体量小二到三个数量级,但材料内部的气体含量对超高真空系统的影响,却大大超过了其表面吸附气体的影响。在正常情况下,当抽速恒定时,超高真空系统的极限压力,主要是由金属材料内部的气体含量及其表面被吸附的表面相的浓度所决定的。金属材料内部的气体,可在不同程度上,通过真空烘烤  相似文献   

5.
重离子深层治癌柬运线真空系统与兰州重离子加速器冷却储存环(HIRFL—CSR)相连接,要求极高、超高真空度。本文介绍了深层治癌线真空系统的布局;根据极高和超高真空段不同的气载和有效抽速进行了系统的压力分布计算;对真空室在常温和烘烤状态下的应力和变形进行了分析;通过系统的实验测试,验证了计算数据。  相似文献   

6.
本文研制了一台快速、精确测量材料放气性能的真空系统,对彩显管用石墨试样制备规范作了实验研究,并给出了国内外石墨试样放气总量的对比数据。  相似文献   

7.
粒子排出是控制燃料粒子再循环、提升等离子体性能的关键因素之一。因此研究了新型吸附剂泵(NEG)在粒子排出技术中的潜在应用。NEG泵基于ZAO新型合金材料制成,对氢及其同位素抽速大、容量高,安装、运行、维护简单,兼容等离子体环境,适用于偏滤器区域的超高热流和复杂的空间结构。在EAST托卡马克装置安装4套HV800模组,开展了定期的抽速标定、再生研究以评估其周期性能变化。EAST真空室壁表面积较大,金属壁放气、杂质气体影响NEG泵抽速计算。通过计算EAST整体漏放率与氢及其同位素放气率,利用计算机模拟抽气过程,提出了一种用于修正NEG泵抽速的方法。研究结果表明在偏滤器区域工作压力下,对氘平均抽速可达1 200 L/s。  相似文献   

8.
本篇文章讨论了二极型和三极型离子泵抽氢的情况。并说明这些泵中所用的阴极材料类型对抽氢效率有重大影响。所举之例包括了有铝,钛和钛合金阴极材料泵的数据。数据表明的铝阴极二极型泵抽氢并不比抽氦更有效。在压强很低时使用钛阳极和泵体钛屏蔽下会对抽速有一定影响。  相似文献   

9.
按抽气过程推出了溅射离子泵的抽速公式。实验研究了阳极结构、阴极材料对提高抽速的作用。通过离子泵抽氩清洗后抽速提高现象的分析研究.证实了阴极材料表层成分对离子泵抽速有几倍的影响;钛阴极的泵在抽氮气达到稳定值后,阴极表层即盖满 TiN,而泵的正常抽速是离子溅射 TiN 生成的钛原子在阳极表面抽气提供的。研究表明,理想的离子泵阴极材料不仅应当溅射率高,溅射膜有高的吸气性能,而且应对入射的被抽气体原子有足够高的扩散能力。  相似文献   

10.
简介 任何真空系统的性能,都是由真空室的材料、泵和真空计的选择而确定的。获得极高真空(低于10-9帕)的首要条件是使用放气率低的材料。现有的不锈钢和因康镍合金是合适的,这种合金在适当条件下,对于氢的放气率低于10-10帕·米·秒-1(10-13托·升·秒-1·厘米-2)。其次,要确切地了解泵和真空计的低压性能。由于测量和抽气极限之间互相干扰,满足后一要求常常是困难的。我们利用了低温泵提供压强与抽速以及低的已知放气率的材料无关的特点,获得了低于微微帕范围(10-12托)的压强,而且可以容易地求得任何测量装置的低压极限。沿用这种方法,我们…  相似文献   

11.
本文叙述了一种大型钛薄膜吸附泵的抽速测试方法,介绍了实验原理及测试装置。实验表明,此方法用于测试薄膜吸附泵的抽速是可行的,测得的数据是可靠的。  相似文献   

12.
本文叙述一个压力小于10-11托金属超高真空系统的材料预处理;介绍了用升压法测量材料极低平均出气率的操作方法;对测量误差和测量结果作了分析和讨论。 一、引言 真空系统所能达到的极限压力P=P0+ [托][1]。式中:P0为泵本身的极限压力(托);Q0为空载时,经常时间抽气后真空室内的气体负载[托·升/秒];S为泵对真空室的有效抽速[升/秒]。 要降低真空系统的极限压力P,靠降低泵的极限压力P0还不够,还必须设法减少真空系统的气体负载Q0,或增大泵的有效抽速S,但有效抽速S的增大要受到结构和成本等多种因素的限制,一般不可能成数量级增加。 如果…  相似文献   

13.
本文通过简单的数学推导,给出了Q/P和Q/ΔP 两种扩散泵抽速表达式,并从物理意义上解释了它们的区别。在此基础上阐明了动态流量法校准中的有效抽速S"(S"=Q/P-P0)何以为一常量的理由。文中给出有关实验数据。  相似文献   

14.
由于分子泵对氦气有较大抽速,因此在真空检漏系统中通常用分子泵作为主泵,但当检漏容器很大时需要大量分子泵。低温泵具有清洁无油、抽速大的优点,如果在检漏系统中能够采用低温泵作为主泵,可以大大减少真空泵数量。本文对以低温泵为主泵的真空检漏系统进行了实验研究,并对实验现象进行了分析。研究结果表明,低温泵可以有效提高检漏系统的工作真空度,对检漏系统的有效灵敏度影响很小,但以低温泵为主泵的检漏系统的反应时间比以分子泵为主泵的检漏系统反应时间长。  相似文献   

15.
烧结型非蒸散吸气剂泵HV800(意大利SAES公司生产)具有抽速大、抽气容量高、安装维护简单等优点,可能适用于EAST托卡马克偏滤器抽气,提高该区域粒子排出能力。本文搭建了一套极限真空5. 1×10-7Pa、具备抽速定量标定的真空测试系统,对HV800开展了对氘气抽速的标定实验。研究结果表明在偏滤器工作气压下,平均抽速可达240 L/s。经评估HV800应用于EAST的初步方案,偏滤器区域会增加5×104L/s抽速,并可连续运行20 h以上,是有效提高EAST偏滤器粒子排出能力的可行选择。  相似文献   

16.
烧结型非蒸散吸气剂泵HV800(意大利SAES公司生产)具有抽速大、抽气容量高、安装维护简单等优点,可能适用于EAST托卡马克偏滤器抽气,提高该区域粒子排出能力。本文搭建了一套极限真空5. 1×10-7Pa、具备抽速定量标定的真空测试系统,对HV800开展了对氘气抽速的标定实验。研究结果表明在偏滤器工作气压下,平均抽速可达240 L/s。经评估HV800应用于EAST的初步方案,偏滤器区域会增加5×104L/s抽速,并可连续运行20 h以上,是有效提高EAST偏滤器粒子排出能力的可行选择。  相似文献   

17.
为了研究绝热材料放气速率与真空压力的关系,采用静态升压法测试了某玻璃纤维纸在不同抽真空时间和不同真空压力下的放气速率,在同一真空压力下对抽真空阶段和静置阶段测得的放气速率进行了对比。发现材料的放气速率不仅与抽真空时间有关,还与抽真空时材料所处的真空压力有关,在同一真空压力下不同测试方式得到的放气速率明显不同。研究表明:相比相同抽真空时间下测得的材料放气速率,在相同真空压力下测得的放气速率数据具有较好的一致性;相比抽真空阶段,抽真空结束后静置放气阶段测得的放气速率在实际应用中更具参考价值。  相似文献   

18.
真空系统是聚变装置的重要组成部分,EAST真空系统包括等离子体放电真空室和低温超导真空室。等离子体放电真空室又称内真空室。内真空室抽气系统直接影响装置的粒子排出,关系到高参数等离子体放电获得。EAST装置升级改造后的内真空室抽气系统主要包括主抽管道抽气子系统、偏滤器抽气子系统和低杂波加热系统抽气子系统,整个抽气系统使用了6台分子泵、14台外置低温泵和2套内置低温泵。采用粒子平衡的方法,对内真空室抽气系统各子系统进行了抽速标定。实验结果表明,最佳抽气性能区间在5×10-4~5×10-3 Pa,并且随着真空室压力增大或者减小,各子系统的抽气速率均下降。对比改进前后的内真空室抽气系统的总抽速,改进后的最大抽速可达170 m3/s,总体抽气速率提升20%左右。在百秒量级等离子放电参数下,利用标定的抽气速率数据初步评估了燃料粒子的滞留情况。本研究为等离子体放电的壁滞留与再循环控制以及其他相关物理实验开展提供了数据支持。  相似文献   

19.
电真空器件内残余气体直接影响其阴极的发射能力与寿命。本文利用高灵敏度四极质谱仪监测了空间行波管在整个排气过程中的残余气体,对各阶段气体成分及含量进行了分析。结果表明:烘烤前,水为主要气体,占80%。前期擦拭用无水乙醇易污染真空系统;升温过程中氢迅速增多,当烘烤温度达到220℃时,H_2成为系统中主要气体;整个烘排过程H_2的分压小于10-3Pa,其余气体分压均小于10~(-4)Pa;烘烤结束后,H_2分压为2. 4×10~(-8)Pa,占74%。H_2O分压为6×10-9Pa,占20%;离子泵与吸气剂泵组可有效抽除残余气体,且对H_2的抽速高于对其他气体抽速;另外,质谱仪自身会放出H_2、H_2O、CH_4、CO_2等气体,在真空系统压力达到10-9Pa范围时,质谱仪自身放气已不可忽略。  相似文献   

20.
高真空获得及维持技术对微纳材料制备、微电子设备制造、真空电子器件工艺优化等领域的科学研究及工业应用至关重要。文章面向高真空获得及维持过程中吸气材料吸气机理解析及寻优材料替代之关键科学问题,致力于克服传统高真空技术维持高真空状态能耗高、传统高真空获得方法依赖于昂贵设备和复杂操作等缺陷,提出了一种基于玻璃破碎新鲜表面诱发高真空获得及压力下限突破的新方法;文章首先开展了吸气成分及分压力测试实验及最大有效抽速实验研究。实验结果表明新鲜玻璃破碎表面具备吸气效应;解析玻璃新鲜表面吸附的主要气体成分及分压力变化,剖析出主要吸附气体组分为氢气和氮气;定量评估了新方法的抽气能力,利用蒙特卡洛方法仿真分析了泵出口管道的传输概率,获得新方法的最大有效抽速。相比现有真空获得和维持技术,文章所提出的新方法具有易激活、材料性价比高、抽速可观等优势,有助于为狭小空间高真空获得及维持提供新型技术途径及应用有效性参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号