首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
对T700/HT280复合材料进行真空热循环处理(-140~180℃,10~(-3) Pa),分别测试真空热循环处理前后复合材料的质损率、动态力学性能和低速冲击性能。采用宏观目视、超声C扫描和有限元分析对低速冲击损伤状况进行分析、表征和模拟。结果表明,随真空热循环次数的增加,由于发生析气效应,T700/HT280复合材料及基体树脂的质损率先急剧升高然后趋于平缓。经历真空热循环处理后T700/HT280复合材料出现了一定程度的后固化、热老化和局部界面脱粘。低冲击能时主要损伤模式为基体树脂受到压缩,高冲击能时主要损伤模式转化为基体开裂、复合材料分层。有限元模拟结果与实验结果吻合。随冲击能量的增大,复合材料吸收能增加。冲击能量为30~40 J条件下,吸收能可以有效地表征出真空热循环对复合材料的环境损伤效应。  相似文献   

2.
T300/LD2复合材料在热循环时产生滞后环并留下很大的残留应变。本文对T300/LD2试样在热循环时产生滞后环和残留应变的原因进行分析和探讨。实验结果表明,基体在热循环时大量的塑性变形是产生滞后环和残留应变的主要原因,并通过在界面预设不同应力和缩短热循环温度区间来研究界面应力状态和热循环温度区间跟热循环时滞后环和残留应变之间的关系。提出了改善残留应变和滞后的方法(1)尽量减少复合材料的使用环境中的温度变化,(2)根据材料的使用环境,经过各种预处理使复合材料在工作时基体处于弹性变形状态,(3)提高基体的屈服强度。  相似文献   

3.
对单向M40J/5228A复合材料进行了真空热循环试验 ( 93~413 K,10-5Pa)。分别测试了经不同次数真空热循环后材料的质损率及线膨胀系数。通过所建二维细观损伤模型分析了真空热循环次数对材料线膨胀系数曲线影响的原因。试验结果表明,随真空热循环次数的增加,质损率增大,并经约48次真空热循环后趋于平缓;横向线膨胀系数随温度升高而线性增大,真空热循环次数对其没有影响;纵向线膨胀系数在原始状态时随温度升高而线性减小,经113次真空热循环后表现出先下降后上升的非线性特征,真空热循环次数对纵向线膨胀系数的影响,与界面脱粘程度和残余应力的消除密切相关。   相似文献   

4.
真空热循环对M40J/环氧复合材料力学性能的影响   总被引:3,自引:0,他引:3  
分别测量了经不同次数单向真空热循环试验(93~413 K,10-5Pa)后M40J/5228A复合材料的拉伸强度、弯曲强度和层剪强度,研究了真空热循环对M40J/环氧复合材料力学性能的影响.结果表明,随着真空热循环次数的增加,90°和0°拉伸强度下降,并分别于48次和40次真空热循环后趋于平缓.弯曲强度随着真空热循环次数的增加表现出先上升后下降再趋于平缓的特征,而层剪强度变化不大.90°和0°拉伸强度的变化与界面脱粘程度密切相关.弯曲强度变化主要反映真空热循环时树脂基体后续固化效应的影响.层剪强度变化是界面脱粘与树脂基体后续固化两种因素综合作用的结果.  相似文献   

5.
研究了不同热循环次数对复合材料组织与性能的影响规律。性能测试结果表明,在15 ̄300℃热循环条件下,随循环次数的增加,SiCw/Al复合材料的拉伸强度明显下降,并且硬度略有降低。透射电镜观察结果表明,经1000次热循环后,复合材料界面处出现一些新相,破坏了循环处理前良好的界面结合。  相似文献   

6.
高温热循环对LP-15聚酰亚胺复合材料界面性能的影响   总被引:1,自引:0,他引:1  
研究热循环对LP-15/G827聚酰亚胺复合材料界面及其力学性能的影响。结果表明:LP-15浇铸体的热膨胀系数在45×10-6/℃左右,远大于LP-15/G827聚酰亚胺复合材料的热膨胀系数(0.1×10-6/℃~0.3×10-6/℃)。复合材料的层间剪切强度和界面剪切强度均随热循环次数的增加而迅速降低,当热循环次数达到30次以后,层间剪切强度仅能维持在50%左右,而当热循环次数达到80次以后,界面剪切强度仅能维持在20%左右。经扫描电镜研究表明,可能主要是由于上浆剂和树脂基体的降解以及纤维与树脂的热膨胀系数不匹配,导致界面处发生破坏,力学性能下降。  相似文献   

7.
热处理过程中SiCP/2024Al复合材料的热应力分析   总被引:2,自引:1,他引:2  
为研究热处理过程中SiCP/2024Al复合材料的热应力的变化规律,及热处理工艺对SiCP/2024Al复合材料热残余应力的影响,利用Marc有限元软件对淬火和冷热循环热处理过程中的SiCP/2024Al复合材料的热应力进行了数值模拟.研究结果表明:热处理过程中,颗粒和基体的界面附近会产生很大的热应力场,并且在SiC颗粒的尖角处产生热应力集中;经淬火处理后的SiCP/2024Al复合材料的热残余应力与基体的屈服强度接近,但经过冷热循环处理后的SiCP/2024Al复合材料中的热残余应力明显降低.  相似文献   

8.
本文研究了两种不同界面结合强度的碳/铝复合材料经不同次数加载热循环处理后的内耗值及内耗机制。弱界面结合的C/L2复合材料的内耗值变化主要由界面脱粘引起,而强界面结合的C/LD2复合材料的内耗值变化主要由位错运动所致。  相似文献   

9.
按球对称模型对粒子增强复合材料中热膨胀差(DCTE)热应力和残余应力进行了弹-塑性分析。结果表明,热应力或残余应力具有短程分布特点;粒子内部为常水静应力,界面和基体中径向应力与粒子内部同号,切向和周向应力与径向应力符号相反。存在一个基体发生初始屈服的临界温差tP,屈服范围随温差|t|而扩大。单程变温产生的残余应力与热应力完全相同;经过一个热循环后,若温差小于tP则残余应力为零;若大于tP,则在粒于和基体中产生残余应力。讨论了粒子形状和尺寸对残余应力和基体塑性变形对复合材料性能的影响。  相似文献   

10.
对海水环境下严重影响单向T700/环氧复合材料层间剪切性能的因素进行了研究,考察了海水和蒸馏水5个浸泡周期(15、40、70、165和400d)后单向T700/环氧复合材料层间剪切性能和吸水率的变化,并利用SEM观测了单向T700/环氧复合材料的剪切断口微观形貌,揭示其性能衰减机制。结果表明:单向T700/环氧复合材料的吸水率随着浸泡时间的延长而增加,整体符合Fick吸水率变化规律;单向T700/环氧复合材料的层间剪切性能下降很明显,浸泡400d后层间剪切性能损失近10%,层间剪切性能的变化规律与吸水率的变化规律相似;单向T700/环氧复合材料的层间剪切性能对海水的敏感性大于对蒸馏水的敏感性;由试样断面微观形貌可以看出,海水的渗入破坏了树脂与纤维的界面,这是导致其层间剪切性能明显下降的主要原因,因此对于单向T700/环氧复合材料在海水中的应用,需要更加关注其层间剪切性能。  相似文献   

11.
研究了热循环拉伸SiCw/6061Al复合材料变形与断裂过程,结果表明,热循环产生的界面应力有且于SiCw/6061Al复合材料的塑性变形;热循环低应力拉伸变形主要是位错的攀移;快速冷却时的过饱和空位既有助于位错的攀移,又能促进孔洞长大。  相似文献   

12.
为了研究上浆剂和湿热处理对复合材料微观界面性能的影响,通过单丝断裂实验测试去浆处理及湿热处理前后T300、T700SC、T800S碳纤维单丝/环氧树脂体系的界面剪切强度(IFSS),结合扫描电镜测试手段分析了纤维表面物理特性对IFSS的影响.结果表明:去浆及湿热处理均会引起三种单丝复合材料体系IFSS降低,断点形貌由X状向鞘状发生变化,但不同的单丝复合体系IFSS降幅以及断点形貌变化程度不同;去浆后,T700SC/环氧树脂体系IFSS降幅达70.67%,T300/环氧树脂体系仅下降6.05%;湿热处理72 h后,T300/环氧树脂体系IFSS下降幅度最小;湿热作用下,去浆后的单丝/环氧树脂体系IFSS的下降更为显著.  相似文献   

13.
对不同几何尺寸的[0°/90°]正交非对称铺设碳纤维复合材料的双稳态特性进行了研究。在分析正交非对称复合材料双稳态特性产生机理和理论基础上,成功制备了碳纤维/环氧树脂(T700/3234)正交铺设的双稳态试样。对制备固化冷却后产生的圆柱状第一稳态、建立实验平台实现向第二稳态转变过程,经过逆向加载返回至第一稳态的整体稳态间转变总过程进行实验研究,分析稳态曲率半径、面外位移、稳态间转变最大载荷及载荷-位移曲线等的变化规律。  相似文献   

14.
为研究国产碳纤维复合材料湿热性能,基于热压罐制备工艺,分别将国产T700级碳纤维和日本东丽T700S碳纤维与国产QY9611双马树脂进行匹配,从纤维表面物理/化学状态、吸湿曲线、吸湿后玻璃化转变温度、宏观力学性能等方面对2种复合材料开展湿热性能研究.结果表明:国产T700/BMI复合材料的饱和吸湿率为0.77%(35 d),T700S/BMI复合材料的饱和吸湿率为0.81%(19 d);71℃水浸168 h后,国产T700/BMI的玻璃化转变温度(T_g)下降10.3%(由252.1℃到226.2℃),T700S/BMI复合材料的玻璃化转变温度(T_g)下降8.7%(由256.6℃到234.3℃);150℃湿态环境下,国产T700/BMI复合材料90°拉伸强度与T700S/BMI基本相当,0°压缩强度较T700S/BMI高约17.9%,层间剪切强度较T700S/BMI高约9.3%,表明国产T700/BMI复合材料具有更优良的湿热力学性能.  相似文献   

15.
为了对高热疲劳性能的表面复合材料的设计提供理论依据 , 采用热震试验方法对通过真空实型铸渗(V2 EPC) 方法制备的 WC/铁基表面复合材料的热疲劳性能进行了研究 , 重点讨论了热疲劳裂纹的形成机制。研究结果表明 , 随着 WC颗粒体积分数的增加 , 表面复合材料的热疲劳性能有所改善 , 当 WC体积分数达到 52 %时 , 复合层表面在经过 10次热循环后能保持完好。热疲劳裂纹扩展机制研究表明 , 陶瓷 WC颗粒增强铁基表面复合材料的热疲劳裂纹的产生和扩展是由 WC和基体本身的热应力和二者界面交变循环应力共同交互作用的结果 , 可以通过选用高热导率的陶瓷颗粒作为增强体、 改善陶瓷颗粒本身的微观质量和采用与陶瓷颗粒热膨胀系数相接近的基体等方法提高复合材料的热疲劳性能。   相似文献   

16.
为准确测定复合材料界面结构的尺寸与性能,提出一种原位峰值力纳米力学模量成像(PF-QNM)技术,对其测试原理、校准方法和适用性进行分析,并采用PF-QNM技术对碳纤维/聚醚醚酮(T300/PEEK)、碳纤维/聚醚砜(T300/PES)和碳纤维/环氧树脂(T700/TR1219B)三种复合材料的界面尺寸和各组分原位模量进行测试。结果标明:该方法的横向分辨率可以达到纳米尺度,测得树脂、界面、纤维区域的弹性模量数值呈梯度上升趋势,区分度明显,T300/PEEK、T300/PES和T700/TR1219B复合材料界面厚度分别为(69.3±7.9)nm、(101.3±10.2)nm和(48.4±5.4)nm。实验范围内,热固性复合材料界面厚度小于热塑性复合材料。对模量成像图统计分析可得,T300/PEEK、T300/PES和T700/TR1219B复合材料的树脂区平均弹性模量分别为4.36 GPa、4.96 GPa和3.59GPa,与其宏观弹性模量数值较为接近。  相似文献   

17.
连续纤维增强PPESK树脂基复合材料的界面性能   总被引:6,自引:0,他引:6  
陈平  陆春  于祺  孙明 《材料研究学报》2005,19(2):159-164
用SEM观察了复合材料的微观断面结构,用横向拉伸强度和层间剪切强度表征玻璃纤维(GF)、T700碳纤维(CF)、芳纶纤维(F-12)增强PPESK树脂基复合材料的界面性能,研究了界面性能对三种复合材料耐湿热性能的影响.结果表明,T700/PPESK和F-12/PPESK复合材料的界面粘接性能均优于GF/PPESK复合体系.三种纤维复合材料的破坏机理不同:玻璃纤维发生纤维与树脂的界面脱粘破坏,碳纤维复合材料在破坏时,树脂与纤维并没有完全脱粘,破坏发生在树脂内;而芳纶纤维复合材料的破坏总伴随着纤维本身横向的撕裂破坏.三种复合材料体系均具有较低的吸湿率和良好的耐湿热性能,T700/PPESK复合材料在湿热条件下的性能保持率最高.  相似文献   

18.
对碳纤维(T700)/双马来酰亚胺(HT280)复合材料进行了空气热循环实验(-60~180℃),分别测试了经历空气热循环前后材料的低速冲击性能和质损率,利用超声C扫描对冲击后材料内部损伤状况进行了分析。实验结果表明:随空气热循环次数的增加,质损率先迅速升高然后趋于平缓。随低速冲击能量的增大,空气热循环前后试样的平均损伤区域面积呈增加趋势,其破坏模式会发生明显变化。在相同低速冲击能量下,经历空气热循环试样的平均损伤区域面积和吸收能均大于原始态试样的。  相似文献   

19.
以多向铺层碳纤维增强双马来酰亚胺(T700/HT280)复合材料和双马来酰亚胺(HT280)树脂为研究对象,采用刚度降的方法研究高温老化对复合材料抗疲劳性能的影响。测量了复合材料和树脂的质损率,并利用FTIR、超声C扫描和动态力学热分析仪(DMA)对高温老化前后材料的化学结构、内部损伤、动态力学行为进行了分析。实验结果表明,随着高温老化时间的延长,两种材料的质损率均呈现先迅速增加后缓慢增加的变化规律。经历长期高温老化后,树脂发生了热氧老化。HT280树脂动态力学性能的变化归因于后固化与热老化效应,T700/HT280复合材料则归因于后固化、热老化和界面脱粘的综合作用。高温老化后T700/HT280复合材料刚度下降的速率与幅度明显小于原始态,表明高温老化后复合材料的后固化与热老化的强化效应明显,导致其抗疲劳性能有一定的提高。  相似文献   

20.
针对碳纤维/环氧树脂体系,设计了在碳纤维单丝复合体系加载弱电流的方法,并通过单丝断裂实验,研究了弱电流对两种碳纤维/环氧树脂界面黏结性能的影响。结果表明:在0.60~0.67mA直流电加载一定时间后,T300B和T700SC碳纤维体系的界面黏结强度均下降,界面载荷传递效率降低,随着电流加载时间的延长,降低程度变化不明显;T300B碳纤维体系界面性能对弱电流的敏感性更高,可能与两种碳纤维的表面特性不同有关;通过对不同固化度试样加载弱电流后的界面性能进行分析,认为碳纤维/环氧树脂界面性能受弱电流影响的机理与界面区应力状态改变以及导电产生的焦耳热效应有关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号