首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
In-situ observations on α/γ phase transformation were made to study the effects of grain boundary microstructures on the formation of a new phase and the migration of α/γ interphase boundary in an iron-4. 2%Cr alloy. It was found that triple junctions with more random boundaries could be the primary nucleation sites for a new phase, while triple junctions with low angle or low ∑ coincidence boundaries did not play any role as preferential sites. The migration of α/γ interphase boundary during heating over the transformation temperature range showed the two stage behaviour characterized by a stage with a migration velocity of 0. 33~0. 75 mm/s and secondly by a stage with 3. 7~7. 6 mm/s. It was also found that abnormal grain growth and a high density of ∑3 coincidence boundaries could occur in a phase with bcc structure after cycling of α/γ phase transformation. A new mechanism of nucleation and growth of a new phase in α/γ phase transformation is proposed on the basis of roles of plane-matching interphase boundaries, as previously discussed on the origin of anisotropy of grain growth due to the migration of {110} plane-matching boundaries in Fe-3%Si alloy. The most recent theoretical work on the distribution of plane-matching boundaries in solids with different crystal structures was found to be useful for the understanding of nucleation and growth during α/γ phase transformation.  相似文献   

2.
The δ-ferrite to γ-austenite phase transformation process of low carbon steel was observed in-situ under a confocal scanning laser microscope and the influence of manganese and chromium on the migration of δ/γ interphase boundary during theδ to γphase transformation was studied. It was found that the δ/γ interphase boundary becomes unstable with the decrease of temperature, from planar to curved morphology during theδ to γ phase transformation of Fe-0.08C steel and Fe-0.08C-0.8Mn steel. But in Fe-0.08C-0.8Cr steel, the δ/γ interphase boundaries are stable with planar morphology during the whole δ-ferrite to γ-austenite transformation. The destabilization of δ/γ inter- phase boundary in Fe-0.08C and Fe-0.08C-0.8Mn steels results from high degree of supercooling and sub-boundaries in 7, respectively. The stabilization of δ/γ interphase boundary in Fe-0.08C-0.8Cr steel results from the slow diffu- sion rate of carbon atom induced by the addition of chromium.  相似文献   

3.
In-situ observations on interphase boundary migration and grain growth during α/γ phase transformation in iron-4.2%Cr alloy@渡边忠雄$日本东北大学 @OBARA Kouichi$Laboratory of Materials Design and Interface Engineering, Department of Nanomechanics, Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan @TSUREKAWA Sadahiro$Laboratory of Materials Design and Interface Engineering, Department of Nanomechanics, Graduate School of Engineering, Tohoku Univer…  相似文献   

4.
Influence of Solution Treatment on Microstructure of AEREX350 Alloy   总被引:1,自引:0,他引:1  
The microstructure of hot rolled AEREX350 alloy under various solution treatments was investigated by scanning electron microscope (SEM) and transmission electron microscope (TEM). It was found that with increasing solution temperature,η phase precipitated firstly at grain boundaries in parallel at 800℃ and then within grains at about 980℃. The η phase precipitated at grain boundaries played a role in preventing the migration of grain boundaries,and the η phase precipitated within grains would form Widmannsttten structure with further increasing solution temperature. η phase precipitated at grain boundaries was dissolved at temperature ranging from 1080℃ to 1095℃,resulting in grain growth promptly owing to release of the pinning effect on grain boundaries. γ' phase precipitated during the process of air cooling after hot rolling and dissolved at temperature ranging between 1010℃ and 1020℃.  相似文献   

5.
Niobium has an important effect on the transformation behaviour,grain size refinement and precipitation strengthening during hot rolling and subsequent cooling in low carbon steels,with even a low content of niobium having a strong effect on the transformation rate from austenite to ferrite.However,the effects of niobium on transformation behaviour have not been fully characterised and understood to date.This paper examines in detail austenite grain growth as a function of austenitisation time in high strength low alloy (HSLA) steels with three different niobium contents,together with the effect of niobium on the isothermal transformation kinetics from austenite to ferrite as a function of temperature.It is shown that austenite has the slowest grain growth rate in the steel with the highest niobium content.When austenite grain sizes are consistent,the steel with the highest niobium content was found to have the slowest transformation rate from austenite to ferrite.  相似文献   

6.
In the current study,a 0.3C-2Si-2Mn-0.28Mo (in wt%) steel with high hardenability was deformed at a relatively low temperature followed by isothermal static phase transformation.This novel thermomechanical processing made it possible to successfully produce an ultrafine ferrite grained structure (~2 μm) in the absence of both dynamic phase transformation and controlled cooling.The use of a model Ni-30Fe austenitic alloy showed that the low temperature deformation induced very fine intragranular defects throughout the microstructure,which would then act as fine spaced ferrite nucleation sites at an early stage of phase transformation.As a result,the coarsening of ferrite was extremely limited during isothermal phase transformation,resulting a very fine ferrite grained structure;even nanoscale in the region of the prior austenite grain boundary.  相似文献   

7.
Effect of boron on the microstructure and impact toughness in the coarse-grained heat-affected zone(CGHAZ)of two high strength low alloy steels,boron-free and boron-containing,was investigated by means of weld thermal simulation test.The result shows that,for the boron-free steel,a microstructure consisting of grain boundary ferrite degenerates pearlite and granular bainite for longer t8/5(the cooling time from 800 to 500 ℃),while lath bainite for shorter t8/5.For the boron-containing steel,granular bainite is dominant for a wide range of t8/5.Continuous cooling transformation(CCT)study on the CGHAZ indicates that the transformation start temperature decreases by about 50-100℃under different t8/5,for the boron-containing steel compared with the boron-free steel.The presence of boron suppresses the nucleation of ferrite at prior austenite grain boundaries and hence enlarges the range of t8/5for granular bainite transformation.However,the addition of boron deteriorates the impact toughness of CGHAZ,which may be due to a markedly increased fraction of martensite-austenite(M-A)constituents and decreased fraction of high angle grain boundaries.  相似文献   

8.
The effect of small deformation below the level (about 8 pct) required for primary recrystallization on abnormal grain growth (secondary recrystallization) has been investigated in bulk polycrystalline Cu. The starting microstructure, without any texture and with a nearly uniform grain size of 168 μm, has been obtained by compressing a cylindrical Cu specimen and recrystallizing at 800 °C. The fully recrystallized specimen shows distinct abnormal grain growth (AGG) after heat treatment at 800 °C for 12 hours. Most of the grain boundaries are faceted when observed under transmission electron microscopy (TEM), and most of the faceted segments are expected to be singular. A singular grain boundary free of defects will migrate by two-dimensional nucleation of new layers, with its velocity varying nonlinearly with the driving force arising from the grain-size difference. Such a growth mechanism is analogous to the well known process for the growth of crystals with singular surfaces from liquid or vapor. The grains slightly larger than the average size will hardly grow, because the driving force for their growth is not sufficient for nucleation of new crystal layers at the boundaries. Those grains larger than a certain critical size will, however, grow at ever-increasing rates with their increasing size, because of the sufficient driving force for two-dimensional nucleation. Such a selective accelerated growth of large grains results in overall AGG behavior. The specimen deformed to 2 pct shows AGG after heat treatment for only 5 minutes at 800 °C, and after 1 hour, large impinged grains are obtained. The grain boundaries show many extrinsic dislocations even after the heat treatments. As proposed earlier by Gleiter, Balluffi, Smith, and their colleagues, the extrinsic grain-boundary dislocations increase the grain-boundary mobilities even at low driving forces, and, hence, even those grains slightly larger than the average size can rapidly grow at the early stages of the heat treatment, in agreement with the observation. In the specimens deformed to 4 to 8 pct, below the level for primary recrystallization, all grains grow steadily without producing distinct AGG. With high densities of extrinsic dislocations at the grain boundaries even after long heat treatments, all grains can readily grow, resulting in overall growth patterns resembling the normal growth. When deformed to 20 and 50 pct, primary recrystallization occurs, and the subsequent AGG behavior depends on the grain size obtained at the completion of the primary recrystallization. Similar small-deformation effects are observed with heat treatment at 600 °C.  相似文献   

9.
In the galvanizing process, it has been proposed that the grain size of the substrate steel influences the Fe-Zn alloy phase reaction kinetics and growth rate during immersion in the liquid Zn bath. Two grain sizes (nominally 15 and 85 μm) were developed in a decarburized low-carbon (0.005) steel and hot-dipped galvanized in 0.00 wt pct Al-Zn and 0.20 wt pct Al-Zn baths to study the effect of substrate grain size on Fe-Zn phase formation. Uniform attack of the substrate steel occurred in the 0.00 wt pct Al-Zn bath, since an Fe2Al5 inhibition layer did not form. No barrier to nucleation of the Fe-Zn phases exists in this Zn bath, and therefore, the substrate steel grain size had no significant effect on the kinetics of phase growth for the gamma, delta, and zeta phase layers. In the 0.20 wt pct Al-Zn bath, discontinuous Fe-Zn phase growth (outburst formation) occurred due to the initial formation of the Fe-Al inhibition layer. The nucleation of the Fe-Zn phases was significantly retarded in this bath for the large (85 μm) substrate grain size. Whereas outbursts were found in the 15-μm grain size substrate after 10 seconds of immersion time, it required 1200 seconds to nucleate just a few outbursts in the 85-μm substrate. These results support the mechanism that Fe-Al inhibition layer breakdown occurs along fast diffusion paths for Zn in the inhibition layer that correspond to the location of substrate steel grain boundaries where reaction with Fe can occur.  相似文献   

10.
The microstructural evolutions of the cold rolled Fe-0.1C-5Mn steel during intercritical annealing were ex- amined using combined advanced techniques. It was demonstrated that intercritical annealing results in an ultrafine granular ferrite and austenite duplex structure in cold rolled 0.1C-5Mn steel. The strong partitioning of manganese and carbon elements from ferrite to austenite was found during intercritical annealing by scanning transmission elec- tron microscopy (STEM) and X-ray diffraction (XRD). Strong effects of boundary characters on the austenite for- mation were indicated by austenite fast nucleation and growth in the high angle boundaries but sluggish nucleation and growth in the low angle boundaries. The ultrafine grained duplex structure in 0.1C-5Mn was resulted from the the sluggish Mn-diffusion and the extra high Gibbs free energy of ferrite phase. Based on the analysis of the micro- structure evolution, it was pointed out that the intercritical annealing of the medium Mn steels could be applied to fabricate an ultrafine duplex grained microstructure, which would be a promising approach to develop the 3rd genera- tion austomobile steels with excellent combination of strength and ductility.  相似文献   

11.
A significant improvement in the degree of superelasticity in Cu-Al-Mn ductile polycrystalline alloys has been achieved through the addition of Ni and control of the recrystallization texture by thermomechanical processing, which contain the annealing in the fcc (α) + bcc (β) two-phase region, followed by heavy cold reductions of over 60 pct. The addition of Ni to the Cu-Al-Mn alloys shows a drastic effect on the formation of the strong {112} 〈110〉 recrystallization texture. Superelastic strains on the order of 7 pct, 3 times larger than those in other Cu-based shape-memory alloys (SMAs), have been realized in the textured Cu-Al-Mn-Ni alloys. The superelastic strains obtainable in the textured Cu-based SMAs are on a par with those attainable in Ni-Ti-based alloys.  相似文献   

12.
采用X射线衍射和室温拉伸方法研究了冷轧变形和固溶处理对Ti-26Nb-4Zr合金板材的织构和力学性能的影响.研究发现,50%冷轧时形成了{001}〈uvw〉织构,随着冷变形量的增加,逐渐形成了{121}〈111〉和{001}〈110〉混合织构,〈110〉方向由与轧制方向垂直转到与轧制方向平行.800℃固溶处理后,随着变形量的增加,{111}〈110〉再结晶织构形成并逐渐增强,但〈110〉方向始终保持与轧制方向平行.由于加工硬化及晶粒细化的作用,导致随着变形量增加,冷轧板材的强度逐渐提高,塑性降低.固溶处理后,由于发生再结晶,使得板材的塑性相比冷轧态明显提高.   相似文献   

13.
张贞贞  任卫  方建锋 《钢铁》2011,46(8):83-88
 采用取向分布函数和取向线分析方法对低温板坯加热取向硅钢从热轧到初次再结晶工艺阶段的织构进行了研究。研究表明:一次冷轧后各层的织构组分与热轧板各层面的织构组分存在着继承关系,次表层存在很强的{001}<110>织构,中心层的织构和热轧板的中心层相似,存在强的{001}<110>和{112}<110>织构;中间退火后发生再结晶,各织构组分的强度有所减弱,Goss织构组分再次出现;二次冷轧后沿厚度方向上的织构不均匀性不明显,{111}<112>织构强度最高,几乎是其他织构组分的1倍,{001}<110>织构大幅降低;初次再结晶后织构沿厚度方向没有明显的不均匀性,{111}<110>为最强的织构组分,并且具有一定强度的Goss位向。  相似文献   

14.
以酒钢CSP工艺DC04冷轧汽车板为原料,通过实验室模拟退火工艺,采用OM、EBSD、ODF技术,研究退火工艺对其组织和织构特征的影响。结果表明,DC04汽车板退火组织为铁素体和少量渗碳体,575℃退火1h再结晶开始,730℃退火1h后再结晶较为充分,并随着退火时间的延长,铁素体晶粒长大。不同压下率的DC04冷轧板和退火板中,主要织构均为bcc金属中典型的α(<110>//RD)纤维织构和γ(<111>//ND)纤维织构。随着压下率增加,{111}<112>织构的取向密度明显大于{111}<110>织构的取向密度。730 ℃退火后,低压下率67%的退火板织构中有微弱的{001}<110>取向,但随着压下率增大,这种织构逐渐消失,而形成较强的{111}<112>、{111}<110>有利织构。增加变形量有利于获得有利的{111}织构而抑制不利{001}织构的生成,从而提高DC04的深冲性能。  相似文献   

15.
后期渗氮工艺是一种低温板坯加热生产技术,广泛应用于取向硅钢生产企业。通过金相+ODF织构分析对工艺各阶段组织进行研究。实验结果表明:热轧及常化织构板沿板厚方向分布不均匀,{110}<001>织构在距热轧板表面1/4厚度处分布最强;冷轧板织构主要是α线和γ线织构;脱碳退火后α线织构大量减弱,{111}<112>织构得到加强,而渗氮后织构变化不明显。二次再结晶组织大晶粒内部出现少量小尺寸的孤岛小晶粒,{001}<100>位向孤岛小晶粒是 Goss晶粒无法吞并的。  相似文献   

16.
Textures and Properties of Hot Rolled High Strength Ti-IF Steels   总被引:1,自引:0,他引:1  
The texture evolution in a high strength Ti-IF steel during the processing of hot rolling, cold rolling, and annealing is studied. For comparison, both ferrite rolling and austenite rolling are employed. It is found that the texture type is the. same after ferrite rolling and austenite rolling, but the texture intensity is much higher in the ferrite rolled sample. Furthermore, texture characteristics at the surface are absolutely different from those at the mid sec tion in both ferrite rolled and austenite rolled samples, as well as under the cold rolled and annealed conditions. The shear texture { 110 } 〈001 〉 disappears and orientation rotates along { 110 } 〈001 〉→ { 554 } 〈 225 〉→ { 111 } 〈 112 〉→{111}〈110〉→{223}〈110〉 during cold rolling. Compared to the austenite rolled sample, the properties of the cold rolled and annealed sheet which is subjected to ferrite rolling are higher.  相似文献   

17.
 High-energy synchrotron diffraction offers great potential for experimental study of recrystallization kinetics. An experimental design to study the recrystallization mechanism of interstitial-free (IF) steel was implemented. The whole annealing process of cold-rolled IF steel with 80% reduction was observed in situ using high-energy X-ray diffraction (HEXRD). The results show how the main texture component of IF steel change, i. e. the α [<110>∥rolling direction (RD)] fiber texture decreases and the γ [<111>∥normal direction (ND)] fiber texture increases. The important part of the α fiber texture is that both the {100}<011> and {112}<011> texture decrease at the beginning of recrystallization. The γ fiber texture increases at the early stage of recrystallization which stems from the increase of {111}<112>. Nevertheless, the {111}<110> does not change after recrystallization. The dynamic evolution of the main texture components {100}<011>, {112}<011>, {111}<112> and {111}<110> is given by in-situ HEXRD.  相似文献   

18.
The texture of cold-rolled aluminum sheet has been known to vary through thickness due to inhomogeneous deformation, which can be caused by a characteristic deformation zone geometry and friction between materials and rolls during rolling. The copper texture is obtained in the center layer, which is plane strain compressed, while the shear texture is in the surface layer, which is approximated by major {001}t〈110t〉 and minor {111}t〈112t〉 and {111}t〈110t〉 components. The recrystallization texture of the surface layer is approximated by {225}t〈10 5 2t〉. The evolution of the recrystallization texture has been explained by the maximum energy release theory, in which the absolute maximum normal stress direction in the deformed state becomes parallel to the minimum elastic modulus direction of the recrystallized grains.  相似文献   

19.
以市场上购买的取向硅钢成品板为原料,经不同压下率冷轧至0.23~0.08 mm不等。借助X射线衍射仪(XRD)检测了冷轧后样品中的织构组分及其含量,利用电子背散射技术(EBSD)测量了试样的取向因子分布情况。观察了孪晶的形貌与晶体学特征,分析了硅钢超薄带的塑性变形行为。结果发现,在平面压缩应力下,{112}<111>滑移系的取向因子较大。随冷轧压下率的增加,Goss织构的含量逐渐减少,{212}<141>织构组分的含量先增加后减少,{111}<112>织构组分的含量逐渐增加,织构组分以{110}<001>→{212}<141>→{111}<112>顺序演变。冷轧后样品中出现了孪晶,其晶体取向为{001}<110>,冷轧过程中孪晶取向没有发生变化。  相似文献   

20.
 采用X射线衍射技术(XRD)研究了不同冷轧压下量对亚稳态奥氏体不锈钢00Cr17Ni7织构的影响,分析了亚稳态奥氏体不锈钢00Cr17Ni7中马氏体相和奥氏体相的织构变化情况。研究结果表明,不同冷轧压下量下,00Cr17Ni7中的奥氏体相织构主要由Brass{110}<112>、Goss{110}<001>和少量的Copper{112}<111>、S{123}<634>组成,并且随着压下量的增加Brass和Goss织构强度显著提高;同时马氏体相织构主要以{115}<110>、{112}<110> 、{111}<112>、{332}<113>组成,织构的形成主要归因于“Kurdjumov-Sachs取向关系”和“体心立方金属轧制织构类型演变的特点”共同作用的结果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号