首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Desensitization is an important characteristic of glutamate receptors of the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) type. 2. Stimulation of N-methyl-D-aspartate (NMDA) or AMPA receptors in cerebellum results in increased production of cyclic GMP. We have investigated AMPA receptor desensitization in vivo by monitoring extracellular cyclic GMP during intracerebellar microdialysis in conscious unrestrained adult rats. 3. Local infusion of AMPA (10 to 100 microM) caused dose-related elevations of cyclic GMP levels. The effect of AMPA was prevented by the non-NMDA receptor antagonist, 6,7-dinitroquinoxaline-2,3-dione (DNQX) and by the nitric oxide (NO) synthase inhibitor NG-nitro-L-arginine (L-NOARG). 4. In the absence of AMPA, DNQX lowered the basal levels of cyclic GMP whereas the NMDA receptor channel antagonist dizocilpine (MK-801) was ineffective. 5. Cyclothiazide, a blocker of AMPA receptor desensitization, potentiated the cyclic GMP response to exogenous AMPA. Moreover, cyclothiazide (100-300 microM) produced on its own dose-dependent elevations of extracellular cyclic GMP. The cyclothiazide-induced response was prevented not only by DNQX but also by MK-801. 6. While the cyclic GMP response elicited by AMPA was totally insensitive to MK-801, the response produced by AMPA (10 microM) plus cyclothiazide (30 microM) was strongly attenuated by the NMDA receptor antagonist (30 microM). 7. The results suggest that (a) AMPA receptors linked to the NO-cyclic GMP pathway in the cerebellum can undergo desensitization in vivo during exposure to exogenous AMPA; cyclothiazide inhibits such desensitization; (b) AMPA receptors (but not NMDA receptors) are 'tonically' activated and kept in a partly desensitized state by endogenous glutamate; (c) if cyclothiazide is present, activation of AMPA receptors may permit endogenous activation of NMDA receptors.  相似文献   

2.
1. Nitric oxide (NO) is known to stimulate soluble guanylyl cyclase, thereby eliciting an elevation of guanosine 3':5'-cyclic monophosphate (cyclic GMP) in target cells. Recently, a selective inhibitor of soluble guanylyl cyclase, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), has been identified and characterized in vitro. We have investigated the in vivo effects of ODQ on the glutamate receptor/NO/ cyclic GMP pathway by monitoring extracellular cyclic GMP during microdialysis of the cerebellum or the hippocampus of freely-moving adult rats. 2. Intracerebellar administration of ODQ (1-100 microM) via the microdialysis probe inhibited, in a concentration-dependent manner, the basal extracellular level of cyclic GMP. The maximal inhibition, measured after a 20 min perfusion with 100 microM ODQ, amounted to 80% and persisted unchanged as long as ODQ was perfused. When ODQ was removed from the perfusion stream after 20 min, the levels of cyclic GMP started to recover, suggesting reversibility of guanylyl cyclase inhibition by ODQ. 3. The cyclic GMP response evoked in the cerebellum by NMDA (200 microM) or by alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA; 100 microM) was largely attenuated by 100 microM ODQ. The pattern of the inhibition curves suggests competition for guanylyl cyclase between ODQ and the NO generated by NMDA or AMPA receptor activation. 4. ODQ (100 microM) prevented the elevation of extracellular cyclic GMP levels provoked by intracerebellar infusion of the NO generator S-nitroso-N-acetylpenicillamine (SNAP; 1 mM). The inhibition of the SNAP effect was rapidly relieved when ODQ was removed from the perfusion fluid. However, ODQ (100 microM) was unable to affect the cyclic GMP response elicited by 5 mM SNAP, in keeping with the proposed idea that ODQ binds to the "NO receptor' in a reversible and competitive manner. 5. Infusion of ODQ (10, 100 or 300 microM) into the hippocampus of freely-moving rats diminished the basal extracellular level of cyclic GMP. The maximal inhibition amounted to 50% and was produced by 100 microM ODQ. 6. The cyclic GMP response observed when 1 mM SNAP was perfused in the hippocampus, similar in percentage terms to that seen in cerebellum, was dramatically reduced during co-infusion of 100 microM ODQ. 7. ODQ appears to act in vivo as a selective, reversible and possibly competitive inhibitor of the soluble guanylyl cyclase targeted by NO. This enzyme may generate most (about 80%) of the cyclic GMP found under basal conditions in the extracellular space of the cerebellum. In the hippocampus, about 50% of the basal cyclic GMP does not seem to originate from the ODQ-sensitive soluble guanylyl cyclase.  相似文献   

3.
Monitoring of extracellular cGMP during intracerebral microdialysis in freely moving rats permits the study of the functional changes occurring in the glutamate receptor/nitric oxide (NO) synthase/guanylyl cyclase pathway and the relationship of these changes to animal behaviour. When infused into the rat hippocampus in Mg2+-free medium, cyclothiazide, a blocker of desensitization of the AMPA-preferring receptor, increased cGMP levels. The effect of cyclothiazide (300 microM) was abolished by the NO synthase inhibitor L-NARG (100 microM) or the soluble guanylyl cyclase inhibitor ODQ (100 microM). During cyclothiazide infusion the animals displayed a pre-convulsive behaviour characterized by frequent "wet dog shakes" (WDS). Neither L-NARG nor ODQ decreased the WDS episodes. Both cGMP and WDS responses elicited by cyclothiazide were prevented by blocking NMDA receptor function with the glutamate site antagonist CGS 19755 (100 microM), the channel antagonist MK-801 (30 microM) or Mg2+ ions (1 mM). The AMPA/kainate receptor antagonists DNQX (100 microM) and NBQX (100 microM) abolished the WDS episodes but could not inhibit the cyclothiazide-evoked cGMP response. DNQX or NBQX (but not MK-801) elevated, on their own, extracellular cGMP levels. The cGMP response elicited by the antagonists appears to be due to prevention of a glutamate-dependent inhibitory GABAergic tone, since infusion of bicuculline (50 microM) caused a strong cGMP response. The results suggest that (a) AMPA/kainate receptors linked to the NO/cGMP pathway in the hippocampus (but not NMDA receptors) are tonically activated and kept in a desensitized state by endogenous glutamate; (b) blockade of AMPA/kainate receptor desensitization by cyclothiazide leads to endogenous activation of NMDA receptors; (c) the hippocampal NO/cGMP system is under a GABAergic inhibitory tone driven by non-NMDA ionotropic receptors; (d) the pre-convulsive episodes observed depend on hippocampal NMDA receptor activation but not on NO and cGMP production.  相似文献   

4.
BACKGROUND AND PURPOSE: Glutamate receptor activation can stimulate nitric oxide (NO) production and possibly play a role in long-term potentiation and excitotoxic-mediated injury. We studied the differential effect of agonist-induced activation of ion channel-linked N-methyl-D-aspartate (NMDA) and alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor subtypes on NO production in vivo in rat hippocampus. We also studied whether dantrolene, a ryanodine calcium channel inhibitor previously shown to attenuate metabotropic glutamate receptor stimulation of NO production, also attenuated ionotropic glutamate receptor-mediated stimulation of NO production. METHODS: Microdialysis probes were placed bilaterally into the CA3 region of the hippocampus of pentobarbital-anesthetized adult Sprague-Dawley rats and were perfused for 5 hours with artificial cerebrospinal fluid (CSF) containing 3 mumol/L [14C]L-arginine. Recovery of [14C]L-citrulline in the effluent was used as a marker of NO production. In 13 groups of rats, increases in [14C]L-citrulline recovery were compared between right- and left-sided probes perfused with no additional drugs versus combinations of NMDA, AMPA, the NO synthase inhibitor N omega-nitro-L-arginine methyl ester (L-NAME), the non-competitive glutamate receptor blocker MK-801, the AMPA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), and dantrolene. RESULTS: Recovery of [14C]L-citrulline during perfusion with artificial CSF progressively increased to 272 +/- 73 fmol/min (+/-SEM) over 5 hours. Contralateral perfusion with 1 mmol/L L-NAME inhibited [14C]L-citrulline recovery. Perfusion with 1 mmol/L MK-801 or 1 mmol/L CNQX reduced [14C]L-citrulline recovery compared with contralateral perfusion with CSF alone. Perfusion with 1 mmol/L NMDA enhanced [14C]L-citrulline recovery, and this enhancement was attenuated by L-NAME, MK-801, and CNQX but not by dantrolene. Perfusion with 1 mmol/L AMPA enhanced [14C]L-citrulline recovery, and this enhancement was also attenuated by L-NAME, MK-801, and CNQX but not by dantrolene. CONCLUSIONS: Through an indirect method of assessing NO production in vivo, results with MK-801 and CNQX indicate that NMDA and AMPA receptor activation contribute to basal NO production in the rat hippocampus. Enhanced NO production with NMDA and AMPA agonists appears to involve a complex neuronal interaction because the effect of NMDA was attenuated by both MK-801 and CNQX and because the effect of AMPA was attenuated by both CNQX and MK-801. In contrast to metabotropic glutamate receptor activation, release of calcium from intracellular ryanodine calcium channels does not appear to be a prominent mediator of ionotropic glutamate receptor stimulation of NO production.  相似文献   

5.
Investigations indicate that the induction of long-term potentiation (LTP) may be mediated by postsynaptic N-methyl-D-aspartate (NMDA) receptors and that the maintenance of LTP may be initiated by nitric oxide (NO), a retrograde messenger carrying signals backward from the postsynaptic to the presynaptic neuron. The present study compared amnestic effects of dizocilpine maleate (MK-801), an NMDA receptor antagonist, and nitro-L-arginine-methyl-ester (L-NAME) and N-nitro-L-arginine (L-NOARG), nitric oxide (NO) inhibitors, in goldfish, using active-avoidance conditioning as the learning paradigm. The results showed that MK-801 and NO inhibitors produced anterograde amnesia at doses that did not impair performance processes necessary for learning to occur. Furthermore, MK-801 did not produce retrograde amnesia, whereas L-NAME did, suggesting that MK-801 impaired learning whereas NO inhibitors impaired memory consolidation and possibly also learning. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

6.
Amino acid concentration in the anterior preoptic area and medial basal hypothalamus was determined by HPLC in female rats: (1) at 16 (prepubertal) vs. 30 (peripubertal) days of age and (2) after N-methyl-D-aspartate (NMDA) or dizocilpine (MK-801) administration in both groups. 30-day-old rats had higher levels of aspartate (Asp; 24%), glutamate (Glu; 49%) and glycine (Gly; 44%) and lower levels of taurine (Tau; 43%) than 16-day-old rats. In 16-day-old rats, NMDA (30 mg/kg, s.c., 10 min) increased the Glut concentration (48%). This effect was prevented by MK-801 pretreatment (1 mg/kg, s.c., 1 h), which did not modify amino acid concentrations per se. In 30-day-old rats, NMDA treatment increased Glut (24%) and asp (42%) levels. MK-801 pretreatment abolished NMDA-induced changes and reduced Tau (26%) and Gly (30%) levels. MK-801 administration alone reduced the concentration of Glut (39%), Asp (54%), Tau (33%) and Gly (31%). It is concluded that both (1) the concentration of Asp, Glu, Gly and Tau and (2) the changes induced by NMDA receptor activation or blockade are different at 16 vs. 30 days of age. The existence of a tonic (positive) control on amino acid levels linked to the NMDA receptor which would be immature or absent at 16 days of age is suggested.  相似文献   

7.
Nitric oxide (NO) is a free radical gas that is synthesized from L-arginine by NO synthase (NOS). Activation of NMDA, non-NMDA or metabotropic glutamate receptors causes NO formation through NOS activation. From data obtained in experiments performed by microdialysis together with nitrate assay, we have proposed that NO production in the cerebellum following non-NMDA and metabotropic glutamate receptor activation may be independent of NOS activity, while NMDA receptor-mediated NO production depends on its activity. Glial cells appear to play a role in modulating NO production by regulating L-arginine availability. Activation of NMDA receptors and the increase in intracellular calcium concentration is a trigger for the long-term potentiation (LTP). NO acts as a retrograde messenger in the hippocampal LTP to enhance glutamate release from presynaptic nerve terminal, in which cyclic GMP may be involved. Behavioral studies demonstrate that NO is involved in some forms of learning and memory. Our studies suggest that NMDA/NO/cyclic GMP signaling plays a role in spatial working memory. Further, it is suggested that NO production in the brain is altered by aging. These results support the hypothesis that NO plays a role in mechanism of synaptic plasticity.  相似文献   

8.
1. Pilocarpine administration has been used as an animal model for temporal lobe epilepsy since it produces several morphological and synaptic features in common with human complex partial seizures. Little is known about changes in extracellular neurotransmitter concentrations during the seizures provoked by pilocarpine, a non-selective muscarinic agonist. 2. Focally evoked pilocarpine-induced seizures in freely moving rats were provoked by intrahippocampal pilocarpine (10 mM for 40 min at a flow rate of 2 microl min(-1)) administration via a microdialysis probe. Concomitant changes in extracellular hippocampal glutamate, gamma-aminobutyric acid (GABA) and dopamine levels were monitored and simultaneous electrocorticography was performed. The animal model was characterized by intrahippocampal perfusion with the muscarinic receptor antagonist atropine (20 mM), the sodium channel blocker tetrodotoxin (1 microM) and the N-methyl-D-aspartate (NMDA) receptor antagonist MK-801 (dizocilpine maleate, 100 microM). The effectiveness of locally (600 microM) or systemically (10 mg kg(-1) day(-1)) applied lamotrigine against the pilocarpine-induced convulsions was evaluated. 3. Pilocarpine initially decreased extracellular hippocampal glutamate and GABA levels. During the subsequent pilocarpine-induced limbic convulsions extracellular glutamate, GABA and dopamine concentrations in hippocampus were significantly increased. Atropine blocked all changes in extracellular transmitter levels during and after co-administration of pilocarpine. All pilocarpine-induced increases were completely prevented by simultaneous tetrodotoxin perfusion. Intrahippocampal administration of MK-801 and lamotrigine resulted in an elevation of hippocampal dopamine levels and protected the rats from the pilocarpine-induced seizures. Pilocarpine-induced convulsions developed in the rats which received lamotrigine perorally. 4. Pilocarpine-induced seizures are initiated via muscarinic receptors and further mediated via NMDA receptors. Sustained increases in extracellular glutamate levels after pilocarpine perfusion are related to the limbic seizures. These are arguments in favour of earlier described NMDA receptor-mediated excitotoxicity. Hippocampal dopamine release may be functionally important in epileptogenesis and may participate in the anticonvulsant effects of MK-801 and lamotrigine. The pilocarpine-stimulated hippocampal GABA, glutamate and dopamine levels reflect neuronal vesicular release.  相似文献   

9.
1. The authors examined the anticonvulsant effects of MK-801 on the pilocarpine-induced seizure model. Intraperitoneal injection of pilocarpine (400 mg/kg) induced tonic and clonic seizure. Scopolamine (10 mg/kg) and pentobarbital (5 mg/kg) prevented development of pilocarpine-induced behavioral seizure but MK-801 (0.5 mg/kg) did not. 2. An electrical seizure measured with hippocampal EEG appeared in the pilocarpine-treated group. Scopolamine and pentobarbital blocked the pilocarpine-induced electrographic seizure, MK-801 treatment augmented the electrographic seizure induced by pilocarpine. 3. Brain damage was assessed by examining the hippocampus microscopically. Pilocarpine produced neuronal death in the hippocampus, which showed pyknotic changes. Pentobarbital, scopolamine and MK-801 protected the brain damage by pilocarpine, though in the MK-801-treated group, the pyramidal cells of hippocampus appeared darker than normal. In all treatments, granule cells of the dentate gyrus were not affected. 4. These results indicate that status epilepticus induced by pilocarpine is initiated by cholinergic overstimulation and propagated by glutamatergic transmission, the elevation of which may cause brain damage through an excitatory NMDA receptor-mediated mechanism.  相似文献   

10.
1. Nitric oxide (NO) synthase activity was studied in slices of human temporal cortex samples obtained in neurosurgery by measuring the conversion of L-[3H]-arginine to L-[3H]-citrulline. 2. Elevation of extracellular K+ to 20, 35 or 60 mM concentration-dependently augmented L-[3H]-citrulline production. The response to 35 mM KCl was abolished by N(G)-nitro-L-arginine (100 microM) demonstrating NO synthase specific conversion of L-arginine to L-citrulline. Increasing extracellular MgCl2 concentration up to 10 mM also prevented the K+ (35 mM)-induced NO synthase activation, suggesting the absolute requirement of external calcium ions for enzyme activity. 3. However, the effect of high K+ (35 mM) on citrulline synthesis was insensitive to the antagonists of ionotropic and metabotropic glutamate receptors dizocilpine (MK-801), 6-nitro-7-sulphamoylbenzo(f)-quinoxaline-2-3-dione (NBQX) or L-2-amino-3-phosphonopropionic acid (L-AP3) as well as to the nicotinic receptor antagonist, mecamylamine. 4. The 35 mM K+ response was insensitive to omega-conotoxin GVIA (1 microM) and nifedipine (100 microM), but could be prevented in part by omega-agatoxin IVA (0.1 and 1 microM). The inhibition caused by 0.1 microM omega-agatoxin IVA (approximately 30%) was enhanced by adding omega-conotoxin GVIA (1 microM) or nifedipine (100 microM). Further inhibition (up to above 70%) could be observed when the three Ca2+ channel blockers were added together. Similarly, synthetic FTX 3.3 arginine polyamine (sFTX) prevented (50% at 100 microM) the K+-evoked NO synthase activation. This effect of sFTX was further enhanced (up to 70%) by adding 1 microM omega-conotoxin GVIA plus 100 microM nifedipine. No further inhibition could be observed upon addition of MK-801 or/and NBQX. 5. It was concluded that elevation of extracellular [K+] causes NO synthase activation by external Ca2+ entering cells mainly through channels of the P/Q-type. Other Ca2+ channels (L- and N-type) appear to contribute when P/Q-channels are blocked.  相似文献   

11.
The administration of ethanol (2 g/kg, i.p.) or of the non-competitive antagonist(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cycloepten-5,1 0-imine maleate (MK-801; 1 mg/kg, i.p.) induced a decrease in the extracellular concentrations of glutamate, as studied by microdialysis in the striatum of awake rats. Moreover, ethanol and MK-801 completely prevented the increase in extraneuronal glutamate concentration induced by the focal application of N-methyl-D-aspartate (NMDA). The present results suggest that ethanol suppresses glutamate release through an inhibition of NMDA glutamate receptors in the rat striatum.  相似文献   

12.
The aim of this work was to assess whether nicotine prevents glutamate neurotoxicity in primary cultures of cerebellar neurons, to try to identify the receptor mediating the protective effect and to shed light on the step of the neurotoxic process which is prevented by nicotine. It is shown that nicotine prevents glutamate and NMDA neurotoxicity in primary cultures of cerebellar neurons. The protective effect of nicotine is not prevented by atropine, mecamylamine or dihydro-beta-erythroidine, but is slightly prevented by hexamethonium and completely prevented by tubocurarine and alpha-bungarotoxin, indicating that the protective effect is mediated by activation of alpha7 neuronal nicotinic receptors. Moreover, alpha-bungarotoxin potentiates glutamate neurotoxicity, suggesting a tonic prevention of glutamate neurotoxicity by basal activation of nicotinic receptors. Nicotine did not prevent glutamate-induced rise of free intracellular calcium nor depletion of ATP. Nicotine prevents glutamate-induced proteolysis of the microtubule-associated protein MAP-2 and disaggregation of the neuronal microtubular network. The possible mechanism responsible for this prevention is discussed.  相似文献   

13.
1. The functional role of the nitric oxide (NO)/guanosine 3':5'-cyclic monophosphate (cyclic GMP) pathway in experimental myocardial ischaemia and reperfusion was studied in rat isolated hearts. 2. Rat isolated hearts were perfused at constant pressure with Krebs-Henseleit buffer for 25 min (baseline), then made ischaemic by reducing coronary flow to 0.2 ml min(-1) for 25 or 40 min, and reperfused at constant pressure for 25 min. Drugs inhibiting or stimulating the NO/cyclic GMP pathway were infused during the ischaemic phase only. Ischaemic contracture, myocardial cyclic GMP and cyclic AMP levels during ischaemia, and recovery of reperfusion mechanical function were monitored. 3. At baseline, heart rate was 287+/-12 beats min(-1), coronary flow was 12.8+/-0.6 ml min(-1), left ventricular developed pressure (LVDevP) was 105+/-4 mmHg and left ventricular end-diastolic pressure 4.6+/-0.2 mmHg in vehicle-treated hearts (control; n=12). Baseline values were similar in all treatment groups (P>0.05). 4. In normoxic perfused hearts, 1 microM N(G)-nitro-L-arginine (L-NOARG) significantly reduced coronary flow from 13.5+/-0.2 to 12.1+/-0.1 ml min(-1) (10%) and LVDevP from 97+/-1 to 92+/-1 mmHg (5%; P<0.05, n=5). 5. Ischaemic contracture was 46+/-2 mmHg, i.e. 44% of LVDevP in control hearts (n=12), unaffected by low concentrations of nitroprusside (1 and 10 microM) but reduced to approximately 30 mmHg (approximately 25%) at higher concentrations (100 or 1000 microM; P<0.05 vs control, n=6). Conversely, the NO synthase inhibitor L-NOARG reduced contracture at 1 microM to 26+/-3 mmHg (23%), but increased it to 63+/-4 mmHg (59%) at 1000 microM (n=6). Dobutamine (10 microM) exacerbated ischaemic contracture (81+/-3 mmHg; n = 7) and the cyclic GMP analogue Sp-8-(4-p-chlorophenylthio)-3',5'-monophosphorothioate (Sp-8-pCPT-cGMPS; 10 microM) blocked this effect (63+/-11 mmHg; P<0.05 vs dobutamine alone, n=5). 6. At the end of reperfusion, LVDevP was 58+/-5 mmHg, i.e. 55% of pre-ischaemic value in control hearts, significantly increased to approximately 80% by high concentrations of nitroprusside (100 or 1000 microM) or L-NOARG at 1 microM, while a high concentration of L-NOARG (1000 microM) reduced LVDevP to approximately 35% (P<0.05 vs control; n=6). 7. Ischaemia increased tissue cyclic GMP levels 1.8 fold in control hearts (P<0.05; n=12); nitroprusside at 1 microM had no sustained effect, but increased cyclic GMP approximately 6 fold at 1000 microM; L-NOARG (1 or 1000 microM) was without effect (n=6). Nitroprusside (1 or 1000 microM) marginally increased cyclic AMP levels whereas NO synthase inhibitors had no effect (n=6). 8. In conclusion, the cardioprotective effect of NO donors, but not of low concentrations of NO synthase inhibitors may be due to their ability to elevate cyclic GMP levels. Because myocardial cyclic GMP levels were not affected by low concentrations of NO synthase inhibitors, their beneficial effect on ischaemic and reperfusion function is probably not accompanied by reduced formation of NO and peroxynitrite in this model.  相似文献   

14.
We studied changes in glutamate receptors, expression of immediate early genes, and AP-1 DNA binding activity in the brains of phenobarbital (PB)-dependent and -withdrawn rats to investigate the possible involvement of activation of glutamate receptors in PB withdrawal syndrome. PB-dependent rats were prepared by feeding drug-admixed food for 5 weeks. Autoradiographic analysis showed that binding of [3H(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imin e (MK-801), an antagonist of N-methyl-D-aspartic acid (NMDA) receptors, increased significantly in the cerebral cortices of PB-dependent and 24-h-withdrawn rats. However, [3H]MK-801 binding in the hippocampus and [3H]6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and [3H]kainic acid binding in the hippocampus and cerebral cortex were essentially unchanged in both groups. PB withdrawal seizures were followed by increased expression of c-fos mRNA in the hippocampus and cerebral cortex and of c-jun mRNA in the cerebral cortex. The induction of c-fos and c-jun mRNA was suppressed by administration of MK-801. Furthermore, PB withdrawal enhanced AP-1 DNA binding activity in the brain. The present findings suggest functional enhancement of glutamatergic neurotransmission during the development of PB withdrawal syndrome.  相似文献   

15.
Involvement of endogenous nitric oxide (NO) on glutamate receptor-mediated response was investigated in neuronal cells cultured from embryonic rat hippocampus. L-NG-Nitroarginine (NOARG), a NO synthase inhibitor, augmented NMDA- and kainate-induced increase in intracellular Ca2+ concentration ([Ca2+]i) measured by fura-2 fluorometry. However, quisqualate-induced response was not affected. The potentiating effect of NOARG was blocked by L-arginine, a substrate for NO synthase. NOARG was also effective when added after glutamate-induced response had reached a steady-state. Hemoglobin itself increased the basal level of [Ca2+]i at concentrations higher than 10 mM, and treatment of the cells with 1.0 mM hemoglobin had no effect on NMDA response. 8-Bromo-cyclic GMP was not effective on NMDA response. These results suggest that endogenous NO inhibits NMDA- and kainate-induced increase in [Ca2+]i as a negative feedback system independent of guanylate cyclase activation.  相似文献   

16.
1. The role of cyclic GMP in the ability of nitric oxide (NO) to decrease intracellular free calcium concentration [Ca2+]i and divalent cation influx was studied in rabbit aortic smooth muscle cells in primary culture. In cells stimulated with angiotensin II (AII, 10(-1) M), NO (10(-10) - 10(-6) M) increased cyclic GMP levels measured by radioimmunoassay and decreased [Ca2+]i and cation influx as indicated by fura-2 fluorimetry. 2. Zaprinast (10(-4) M), increased NO-stimulated levels of cyclic GMP by 3-20 fold. Although the phosphodiesterase inhibitor lowered the level of [Ca2+]i reached after administration of NO, the initial decreases in [Ca2+]i initiated by NO were not significantly different in magnitude or duration from those that occurred in the absence of zaprinast. 3. The guanylyl cyclase inhibitor, H-(1,2,4) oxadiazolo(4,3-a) quinoxallin-1-one (ODQ, 10(-5) M), blocked cyclic GMP accumulation and activation of protein kinase G, as measured by back phosphorylation of the inositol trisphosphate receptor. ODQ and Rp-8-Br-cyclic GMPS, a protein kinase G inhibitor, decreased the effects of NO, 10(-10) - 10(-8) M, but the decrease in [Ca2+]i or cation influx caused by higher concentrations of NO (10(-7) - 10(-6) M) were unaffected. Relaxation of intact rabbit aorta rings to NO (10(-7) - 10(-5) M) also persisted in the presence of ODQ without a significant increase in cyclic GMP. Rp-8-Br-cyclic GMPS blocked the decreases in cation influx caused by a cell permeable cyclic GMP analog, but ODQ and/or the protein kinase G inhibitor had no significant effect on the decrease caused by NO. 4. Although inhibitors of cyclic GMP, protein kinase G and phosphodiesterase can be shown to affect the decrease in [Ca2+]i and cation influx via protein kinase G, these studies indicate that when these mechanisms are blocked, cyclic GMP-independent mechanisms also contribute significantly to the decrease in [Ca2+]i and smooth muscle relaxation to NO.  相似文献   

17.
AIM: To investigate age related alterations in glutamate N-methyl-D-aspartate (NMDA) receptor binding produced by the modulatory compounds glutamate, glycine, and magnesium (Mg2+) sulphate. METHODS: The effects produced by glutamate plus glycine, and Mg2+ on the binding of [3H]MK-801, a ligand for the N-methyl-D-aspartate ion channel phencyclidine site, were measured in membrane preparations made from prefrontal cortex from human neonate (n = 5), infant (n = 6), and adult (n = 6) necropsy brains. RESULTS: Neonatal brains had the least [3H]MK-801 binding, suggesting either a low density of NMDA receptors or a more restricted access of [3H]MK-801 to cation channel sites. Infant brains had the most [3H]MK-801 binding which was stimulated to a greater extent by L-glutamate (100 microM) and glycine (10 microM) than in neonatal and adult brains. MG2+ invariably inhibited [3H]MK-801 binding. However, the Mg2+ IC50 value was higher in neonatal brain (3.6 mM) than infant (1.4 mM) and adult (0.87 mM) brains. CONCLUSION: Infant brain may have excess NMDA receptors which are hyper responsive to glutamate and glycine. The lower potency of Mg2+ to inhibit [3H]MK-801 binding in neonatal cortex may be because newborn babies have NMDA receptors without the normal complement of Mg2+ sites. The findings suggest that therapeutic NMDA receptor block in neonates requires higher concentrations of magnesium sulphate in brain tissue.  相似文献   

18.
Retinal neurons that express the immediate early gene c-fos after light exposure were characterized by neurotransmitter content using histochemical and immunocytochemical staining. In Northern blots the amount of c-fos mRNA peaked at 30 min, but remained detectable 60 min following light stimulation. Fos proteins were seen in the inner nuclear and ganglion cell layers, and the staining was most intense two and three hours after beginning the light exposure. In the ganglion cell layer 30-40% of Fos-immunoreactive cells were cholinergic displaced amacrine cells and 3-5% were ganglion cells. In the inner nuclear layer 24% of Fos-immunoreactive cells were Type I and 7% Type II NADPH-diaphorase-reactive (nitric oxide synthase) amacrine cells, 11% were tyrosine hydroxylase-containing cells, and 10-15% cholinergic amacrine cells. No Fos immunoreactivity was seen in serotoninergic, somatostatin- or VIP-immunoreactive cells, bipolar, horizontal or photoreceptor cells. Nicotine, kainic acid, NMDA and SCH 38393, a dopamine D1 receptor agonist, induced Fos immunostaining in the inner nuclear and ganglion cell layers, but administration of the corresponding receptor blockers mecamylamine, kynuretic acid, MK-801, haloperidol and SCH 23990 did not prevent light-induced Fos expression.  相似文献   

19.
We employed a canine model to test whether binding to the N-methyl-D-aspartate (NMDA) class of glutamate receptor channels is altered by global cerebral ischemia and/or reperfusion. Ischemia was induced by 10-min cardiac arrest, followed by restoration of spontaneous circulation for periods of 0, 0.5, 2, 4, and 24 h. In vitro autoradiography was performed on frozen brain sections with three radioligands: [3H]glutamate (under conditions to label the NMDA site), [3H]glycine, and [3H]MK-801. Modest decreases in [3H]glutamate and [3H]MK-801 binding were seen in several regions of hippocampus, and parietal and temporal cortex at early times after reperfusion, with values returning toward control by 24 h. In the striatum, a different pattern was seen: [3H]glutamate and [3H]MK-801 binding increased 50-200% at 0.5-4 h after the start of reperfusion, returning toward control levels by 24 h. These increases correlate with findings of increased sensitivity to NMDA-stimulated release of dopamine from striatal tissue in the same model (Werling et al., 1993), and suggest that changes in tissue receptors may contribute to the selective vulnerability to ischemic damage during the first hours following reperfusion.  相似文献   

20.
N-methyl-D-aspartate (NMDA) glutamate receptors mediate critical components of cardiorespiratory control in anesthetized animals. The role of NMDA receptors in the ventilatory responses to peripheral and central chemoreceptor stimulation was investigated in conscious, freely behaving rats. Minute ventilation (VE) responses to 10% O2, 5% CO2, and increasing intravenous doses of sodium cyanide were measured in intact rats before and after intravenous administration of the NMDA receptor antagonist MK-801 (3 mg/kg). After MK-801, eupcapnic tidal volume (VT) decreased while frequency increased, resulting in a modest reduction in VE. Inspiratory time (TI) decreased, whereas expiratory time remained unchanged. The VE responses to hypercapnia were qualitatively similar in control and MK-801 conditions, with slight reductions in respiratory drive (VT/TI) after MK-801. In contrast, responses to hypoxia were markedly attenuated after MK-801 and were primarily due to reduced frequency changes, whereas VT was unaffected. Sodium cyanide doses associated with significant VE increases were 5 and 50 microg/kg before and after MK-801, respectively. Thus 1-log shift to the right of individual dose-response curves occurred with MK-801. Selective carotid body denervation reduced VE during hypoxia by 70%, and residual hypoxic ventilatory responses were abolished after MK-801. These findings suggest that, in conscious rats, carotid and other peripheral chemoreceptor-mediated hypoxic ventilatory responses are critically dependent on NMDA receptor activation and that NMDA receptor mechanisms are only modestly involved during hypercapnia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号