首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The manufacturing of chemical vapour deposition (CVD) diamond coated shaft type cutting tools is demanding due to the complex design of the cutting edges and the cobalt content of the cemented carbide. The influencing parameters of substrate, pre-treatment and diamond film on the tool cutting performance are discussed. The optimised manufacturing route of CVD diamond coated thread milling drills is identified with the use of material and tribological tests. Following the optimised production of the tools, the thread milling drills are then applied in the machining of AlSi17Cu4Mg, whereby the tool performance is characterised with respect to their wear behaviour, the process forces and temperatures as well as the workpiece quality.  相似文献   

2.
A new thermal model is presented for turning with tools with multilayer coatings. In the previous paper [Int. J. Mach. Tools Manuf. 43 (2003) 1311] devoted to the thermal problems in dry turning of steels with tools treated with multilayer coatings with an intermediate Al2O3 layer new analytical models for estimating the heat partition to the chip and the average interface temperature were derived and the predictions were compared with experimental results. In this paper, a physics based modelling concept has been applied to both the individual layer and the composite layer approach to develop an estimate of the average and the maximum steady-state chip-tool interface temperatures in orthogonal turning. Different approaches for determining the heat partition coefficient for sliding bodies of defined thermal properties were tested. Experiments using the work and the tool as the thermocouple pair have verified that the proposed models accurately predict the temperatures for uncoated and coated tools for a range of cutting speeds. As a result a new computational algorithm, for predicting with reasonable accuracy the average and peak values of the temperatures at the chip-coating/substrate interface at cutting speeds up to 200 m/min, has been recommended.  相似文献   

3.
High temperatures generated in machining are known to facilitate oxidation wear. A controlled atmosphere chamber was developed to investigate the effects of oxygen on tool wear and high speed machining tests were conducted on air and in argon. Cemented carbide, cermet and cubic boron nitride tooling was used on alloyed steel, hardened tool steel and superalloy Alloy 718. Machining in argon resulted in higher flank wear, higher cutting forces, and larger tool–chip contact length on the rake face. However, in hard machining, argon atmosphere reduced rake cratering. Transmission electron microscopy of tools worn on air showed formation of nanocrystalline Al2O3 film on the rake when machining aluminium containing Alloy 718, while no oxide films was detectable in the other cases.  相似文献   

4.
Influence of cutting edge radius on cutting forces in machining titanium   总被引:3,自引:0,他引:3  
The performance of machining titanium can be enhanced by using cutting tools with rounded cutting edges. In order to better understand the influence of rounded cutting edges and to improve the modelling of the machining process, their impact on active force components including ploughing forces and tool face friction is analysed. This paper presents experimental results of orthogonal turning tests conducted on Ti-6Al-4V with different cutting edge radii and changing cutting speeds and feeds. As an accurate characterisation method for the determination of the cutting edge radius is prerequisite for this analysis, a new algorithm is described which reduces uncertainties of existing methods.  相似文献   

5.
Cutting performance of titanium carbonitride cermet tools   总被引:1,自引:0,他引:1  
Titanium carbonitride matrix cermets with different WC/TiCN ratio, Co/Ni ratio and C/N ratio in TiCN solid solution were prepared according to a powder metallurgical procedure. Their cutting performance was investigated, and their flank worn micrographs were observed by using scanning electron microscopy. Results show the optimum WC/TiCN ratio, Co/Ni ratio and C/N ratio are 0.30, 2.0, 1.0, respectively. Cermets with high hardness and TRS show excellent flank wear resistance. The flank wear of the tool is caused by the abrasive, oxidation and diffusive wear at high cutting speed. Decreasing Co/Ni ratio and C/N ratio improve the oxidation and diffusive wear resistance of cermet tool.  相似文献   

6.
The material of Zerodur is widely used in high performance optics because of its excellent thermal stability characteristics. This paper deals with the development of an APPJ (Atmospheric Pressure Plasma Jet) chemical machining process for defect free and high efficiency machining of Zerodur. The APPJ chemical machining mechanism for multi-phase multi-composite materials is presented. The chemical property of the plasma jet is investigated via the atom emission spectrum analysis method and the experimental results of Zerodur material removal function and surface roughness variation with different processing parameters are discussed. Scientific explanations for the experimental observations are given.  相似文献   

7.
E. Budak  E. Ozlu 《CIRP Annals》2008,57(1):97-100
A thermomechanical model for cutting processes is presented. The deformation in the shear zone is represented using Johnson-Cook material model. The rake contact is modeled using sticking and sliding zones, and their lengths are also predicted. The parameters of the material model and the friction coefficient on the rake are directly identified from a few number of orthogonal cutting tests. The model can predict cutting forces, shear angle and stress, pressure distribution and contact lengths on the rake face and temperature distribution. The application of the model to common operations such as turning and multi-axis milling is also presented with experimental verification, and satisfactory results are obtained.  相似文献   

8.
Prediction of cutting forces in machining of metal matrix composites   总被引:1,自引:1,他引:1  
This paper presents a mechanics model for predicting the forces of cutting aluminum-based SiC/Al2O3 particle reinforced MMCs. The force generation mechanism was considered to be due to three factors: (a) the chip formation force, (b) the ploughing force, and (c) the particle fracture force. The chip formation force was obtained by using Merchant's analysis but those due to matrix ploughing deformation and particle fracture were formulated, respectively, with the aid of the slip line field theory of plasticity and the Griffith theory of fracture. A comparison of the model predictions with the authors’ experimental results and those published in the literature showed that the theoretical model developed has captured the major material removal/deformation mechanisms in MMCs and describes very well the experimental measurements.  相似文献   

9.
TiCN–Ni-based cermets are attractive cutting tools because of the combination of high hardness and wear resistance with improved toughness and thermal shock resistance. The present work reports the effect of WC addition (0–15 wt.%) on the machining performance of TiCN–20 wt.% Ni cermets against boiler steel. The cutting force was measured on-line using dynamometer, with respect to varying cutting speed and feed rate, in dry and orthogonal cutting conditions. The principal aim of the present investigation is to evaluate the dominant mechanisms, responsible for material removal on the rake face of cermets, using SEM–EDS. The cutting performance of TiCN–Ni cermet is observed to improve with the addition of WC content upto 10 wt.%. While, the adhesion of tribochemical layer is dominant with limited WC content, the presence of abrasive grooves and pull-outs are observed for TiCN–20Ni cermets containing higher amount of WC (>10 wt.%).  相似文献   

10.
Non-conventional methods of machining are used for many engineering applications where the traditional processes fail to be cost-effective. Such processes include Ion Beam Machining (IBM), focused ion beam (FIB) machining and plasma discharge machining. The mechanisms of material removal and associated hardware and software developed for industrial applications of these fascinating electro-physical and chemical machining processes are reviewed together with the latest research findings.  相似文献   

11.
Medium-frequency magnetron sputtered PVD ZrN coatings (ZrN, ZrN/Zr) were deposited on YT15 (WC + 15%TiC + 6%Co) cemented carbide. Microstructural and fundamental properties of these ZrN coatings were examined. Dry machining tests on hardened steel were carried out with these coated tools. The wear surface features were examined by scanning electron microscopy. Results showed that deposition of the PVD ZrN coatings onto the YT15 cemented carbide causes great increase in surface hardness. The ZC-1 coated tool (ZrN/YT15 without interlayer) has the highest surface hardness; while the ZC-2 (ZrN/Zr/YT15 with a Zr interlayer) shows the highest adhesion load for the coatings to the substrate. The ZrN coated tools exhibit improved rake and flank wear resistance to that of the YT15 tool. The coated tools with a Zr interlayer (ZC-2) have higher wear resistance over the one without Zr interlayer (ZC-1). The rake wear of the ZrN coated tools at low cutting speed was mainly abrasive wear; while the mechanism responsible for the rake wear at high cutting speed was determined to be adhesion. Extensive abrasive wear accompanied by small adhesive wear were found to be the predominant flank wear mechanisms for the ZrN coated tools.  相似文献   

12.
In this paper, analytical models for estimating the interface temperature and heat partition to the chip in continuous dry machining of steels with flat-faced tools treated with multilayer coatings are presented. The database for modeling includes changes in the thermal properties of both workpiece and substrate/coating materials and the Peclet and Fourier numbers occurring at actual interface temperatures. Process outputs involve the average tool–chip interface temperature, the tool–chip contact length, the friction energy and the heat balance between the moving chip and stationary tool. It was found that the heat partition coefficient varies significantly from 0.65 to 0.8 when using multilayer coated tools, and changes from 0.5 to 0.6 for uncoated carbide tools. This implies that the use of multilayer coated tools causes about 30% more heat generated due to friction to be transferred into the moving chip. In general, both power and linear models can be used to estimate the interface temperature.  相似文献   

13.
Design, fabrication and application of ceramic cutting tools are one of the important research topics in the field of metal cutting and advanced ceramic materials. In the present study, wear resistance of an advanced Al2O3/Ti(C,N)/SiC multiphase composite ceramic tool material have been studied when dry machining hardened tool steel and cast iron under different cutting conditions. Microstructures of the worn materials were observed with scanning electronic microscope to help analyze wear mechanisms. It is shown that when machining hardened tool steel at low speed wear mode of the kind of ceramic tool material is mainly flank wear with slight crater wear. The adhesion between tool and work piece is relatively weak. With the increase of cutting speed, cutting temperature increases consequently. As a result, the adhesion is intensified both in the crater area and flank face. The ceramic tool material has good wear resistance when machining grey cast iron with uniform flank wear. Wear mechanism is mainly abrasive wear at low cutting speed, while adhesion is intensified in the wear area at high cutting speed. Wear modes are dominantly rake face wear and flank wear in this case.  相似文献   

14.
Sharp cutting edges of coated tools are often rounded to increase their stability. In the described investigations coated cutting edges of cemented carbide inserts were variously rounded by grinding. The coating thickness distributions in the transient region between tool flank and rake were determined by an appropriate evaluation of ball cratering tests using confocal microscopy. The cutting performance of the tools was examined in milling at different cutting speeds and chip lengths, which were adjusted based on FEM calculations. The results demonstrated that even cutting edges with slightly revealed substrate can effectively withstand the cutting loads.  相似文献   

15.
Study of machining accuracy in ultrasonic elliptical vibration cutting   总被引:10,自引:2,他引:10  
The cutting speeds of the tool, the rake angle and clearance angle through the cycles of elliptical vibration cutting for separating type ultrasonic elliptical vibration cutting are defined initially in the present paper. Subsequently, a theoretical model of the thrust cutting force in ultrasonic elliptical vibration cutting is proposed, and the reason of the machining accuracy improvement by applying ultrasonic elliptical vibration is clarified theoretically. Finally, the effect of ultrasonic elliptical vibration cutting on machining accuracy is verified experimentally by utilizing an ultrasonic elliptical vibration cutting system.  相似文献   

16.
This paper presents investigations on turning Ti-6Al-4V alloy with multi-layer coated inserts. Turning of Ti-6Al-4V using uncoated, TiAlN coated, and TiAlN + cBN coated single and multi-layer coated tungsten carbide inserts is conducted, forces and tool wear are measured. 3D finite element modelling is utilized to predict chip formation, forces, temperatures and tool wear on these inserts. Modified material models with strain softening effect are developed to simulate chip formation with finite element analysis and investigate temperature fields for coated inserts. Predicted forces and tool wear contours are compared with experiments. The temperature distributions and tool wear contours demonstrate some advantages of coated insert designs.  相似文献   

17.
18.
Diamond coating tools have been increasingly used for machining advanced materials. Recently, a microwave plasma-assisted chemical vapor deposition (CVD) technology was developed to produce diamond coatings which consist of nano-diamond crystals embedded into a hard amorphous diamond-like carbon matrix. In this study, the nanocrystalline diamond (NCD) coating tools were evaluated in machining high-strength aluminum (Al) alloy. The conventional CVD microcrystalline diamond coating (MCD) tools and PCD tools were also tested for performance comparisons. In addition, stress distributions in diamond coating tools, after deposition and during machining, were analyzed using a 2D finite element (FE) thermomechanical model.

The results show that catastrophic failures, reached in all except one machining conditions, limit the NCD tool life, which is primarily affected by the cutting speed. In addition, coating delamination in the worn NCD tools is clearly evident from scanning electron microscopy (SEM) and force monitoring in machining can capture the delamination incident. At a high feed, coating delamination may extend to the rake face. Furthermore, SEM observations of coating failure boundaries show intimate coating-substrate contact. Though the NCD tools are inferior to the PCD tools, they substantially outperform the MCD tools, which failed by premature delamination. The diamond coating tools can have high residual stresses from the deposition and stresses at the cutting edge are highly augmented. Further machining loading causes the stress reversal pattern which seems to correlate with the tool wear severity.  相似文献   


19.
A method is described for calculating the optimum cutting conditions in turning for objective criteria such as minimum cost or maximum production rate. The method uses a variable flow stress machining theory to predict cutting forces, stresses, etc. which are then used to check process constraints such as machine power, tool plastic deformation and built-up edge formation. A modified form of Taylor tool life equation where the constants are determined using the machining theory has been employed in predicting tool life for the optimisation procedure. The obtained results indicate that the described method is capable of selecting the appropriate cutting conditions.  相似文献   

20.
An analysis of a polycrystalline diamond (PCD)-tipped tool after drilling 40,000 holes in aluminum (Al) 319 alloy under fully lubricated conditions is reported. It is found that aluminum adheres to the PCD tip surface during the machining process under lubricated condition. The aluminum transferring leads to poor surface finishing. Surface morphology analysis and element mapping suggests that the cobalt (Co) binder in the PCD tips is responsible for the adhesion of aluminum to the PCD surface, due to the chemical affinity between aluminum and cobalt. Approaches to prevent the adhesion of aluminum to the tool are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号