首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Laser-assisted machining of Inconel 718 with an economic analysis   总被引:2,自引:0,他引:2  
Superalloys have high strengths at elevated temperatures, which make them attractive toward various applications and also make these materials difficult to machine at room temperature due to excessive tool wear and poor surface finish. Laser-assisted machining (LAM) offers the ability to machine superalloys more efficiently and economically by providing the local heating of the workpiece prior to material removal by a single point cutting tool.An existing transient, three-dimensional heat transfer model is modified for modeling LAM of Inconel 718. Suitable coating conditions are determined for increasing the laser absorptivity in metals and an approximate absorptivity value is determined. The thermal model is validated in axial and circumferential directions by temperature measurement using an infrared camera.The machinability of Inconel 718 under varying conditions is evaluated by examining tool wear, forces, surface roughness, and specific cutting energy. With increasing material removal temperature from room temperature to 620 °C, the benefit of LAM is demonstrated by a 25% decrease in specific cutting energy, a 2–3-fold improvement in surface roughness and a 200–300% increase in ceramic tool life over conventional machining. Moreover, an economic analysis shows significant benefits of LAM of Inconel 718 over conventional machining with carbide and ceramic inserts.  相似文献   

2.
Dry machining of Inconel 718, workpiece surface integrity   总被引:1,自引:0,他引:1  
In the machining of Inconel 718, nickel based heat resistant superalloy and classified difficult-to-cut material, the consumption of cooling lubricant is very important. To reduce the costs of production and to make the processes environmentally safe, the goal is to move toward dry cutting by eliminating cutting fluids. This goal can be achieved by using coated carbide tool and by increasing cutting speed.The present paper firstly reviews the main works on surface integrity and especially residual stresses when machining Inconel 718 superalloy. It focuses then on the effect of dry machining on surface integrity. Wet and dry turning tests were performed at various cutting speeds, with semi-finishing conditions (0.5 mm depth of cut and 0.1 mm/rev feed rate) and using a coated carbide tool. For each cutting test, cutting force was measured, machined surface was observed, and residual stress profiles were determined. An optimal cutting speed of 60 m/min was determined, and additional measurements and observations were performed. Microhardness increment and the microstructure alteration beneath the machined surface were analysed. It is demonstrated that dry machining with a coated carbide tool leads to potentially acceptable surface quality with residual stresses and microhardness values in the machining affected zone of the same order than those obtained in wet conditions when using the optimised cutting speed value; in addition, no severe microstructure alteration was depicted.  相似文献   

3.
The aim of the present research work has been to gain a broader understanding of how or why laser assisted machining (LAM) improves machinability of Inconel 718, a hard-to-machine material of interest in the aeronautic industry. This has been accomplished by, first, running short run tests to determine the laser parameters and configuration for which highest force reductions are obtained and also to determine the effect of cutting parameters (feed, cutting speed and depth of cut) on force reduction. Secondly, long run tests have been performed in order to analyze process variables such as cutting forces, tool wear and surface roughness. Temperatures and hardness have been also measured in order to gain a broader perspective of the process.Experimental results have demonstrated that LAM improves machinability of Inconel 718 since machining forces and final surface roughness are reduced. The novelty reached with the present research work is the identification of three mechanisms associated to the laser heating as the responsible of this machinability improvement: material yield strength reduction, material base hardness reduction (only in precipitation hardened Inconel 718) and elimination of the work hardening generated in previous machining passes. The reduction of the work hardening leads also to a lower notch wear that limits the risk of sudden failure of the cutting tool and thus the wear mode is changed to flank wear, which leads to a controllable tool life and better surface roughness.  相似文献   

4.
Titanium alloy (Ti–6Al–4V) is one of the materials extensively used in the aerospace industry due to its excellent properties of high specific strength and corrosion resistance, but it also presents problems wherein it is an extremely difficult material to machine. The cost associated with titanium machining is also high due to lower cutting speeds (<60 m/min) and shorter tool life. Laser-assisted machining (LAM) and consequently hybrid machining is utilized to improve the tool life and the material removal rate. The effectiveness of the two processes is studied by varying the tool material and material removal temperature while measuring the cutting forces, specific cutting energy, surface roughness, microstructure and tool wear. Laser-assisted machining improved the machinability of titanium from low (60 m/min) to medium-high (107 m/min) cutting speeds; while hybrid machining improved the machinability from low to high (150–200 m/min) cutting speeds. The optimum material removal temperature was established as 250 °C. Two to three fold tool life improvement over conventional machining is achieved for hybrid machining up to cutting speeds of 200 m/min with a TiAlN coated carbide cutting tool. Tool wear predictions based on 3-D FEM simulation show good agreement with experimental tool wear measurements. Post-machining microstructure and microhardness profiles showed no change from pre-machining conditions. An economic analysis, based on estimated tooling and labor costs, shows that LAM and the hybrid machining process with a TiAlN coated tool can yield an overall cost savings of ~30% and ~40%, respectively.  相似文献   

5.
Laser-assisted machining of compacted graphite iron   总被引:2,自引:0,他引:2  
Compacted graphite iron (CGI) is a material currently under study for the new generation of engines, including blocks, cylinder liners, and cylinder heads. Its unique graphite structure yields desirable high strength, but makes it difficult to machine, thus resulting in a machining cost. Laser-assisted machining (LAM) is adopted to improve its machinability and hence machining economics. The machinability of CGI is studied by varying depth of cut, feed, and material removal temperature and then evaluating resultant cutting forces, specific cutting energy, surface roughness, and tool wear. At a material removal temperature of 400 °C and a feed of 0.150 mm/rev at a cutting speed of 1.7 m/s, it is shown that tool life is 60% greater than conventional conditions at a feed of 0.100 mm/rev. Surface roughness is improved 5% as compared to conventional machining at a feed of 0.150 mm/rev. CGI microstructure evaluated post machining by sectioning and polishing shows no change. An economic analysis shows that LAM can offer an approximately 20% cost savings for the machining of an engine cylinder liner.  相似文献   

6.
The production of extremely thick silicon carbide (SiC) has recently become possible with the advent of a specific chemical vapor deposition process. Ultra-precision machining of high-purity SiC has been performed by using a polycrystalline diamond (PCD) micromilling tool to investigate the machining characteristics. Results indicate that a high-quality surface (Ra = 1.7 nm) can be obtained when the removed chips are thin enough to achieve ductile mode machining. Micron-sized wells and groove structures with nanometer-scale surface roughness were successfully machined by using the PCD tool. In addition, a new electrochemically assisted surface reconditioning process has been proposed to remove the contaminant material adhered onto the PCD tool surfaces after prolonged machining.  相似文献   

7.
This paper is concerned with the experimental and numerical study of face milling of Ti-6Al-4 V titanium alloy. Machining is carried out by uncoated carbide cutters in the presence of an abundant supply of coolant. Experimental analysis is conducted by focusing on the measurement of specific cutting energy, surface integrity and tool performance. The experimental analysis is supplemented by simulations from a 3D finite element model (FEM) of face milling simulation where needed. A tool wear model parameterized from FEM predictions of the tool-chip interface temperature, contact stress and chip velocity is presented. Tool wear patterns are described in terms of various cutting conditions and the influence of tool wear on surface integrity is investigated. Tool wear predictions based on the 3D FEM simulation show good agreement with experimental tool wear measurements. The highest cutting speed realized for the cutting tool material is 182.9 m/min (600 sfpm). Good surface integrity in terms of favorable residual stress and surface finish is achieved under the machining conditions used with limited tool wear. Residual stresses imparted to the machined surface are shown to be compressive.  相似文献   

8.
An investigation has been conducted to study wetting characteristics of aluminium towards different cutting tool materials for assessing the compatibility for dry machining of aluminum. For this purpose uncoated carbide (94%WC + 6%Co) and mono or multi-layer coated carbide tools with top coating of TiC, TiN, Al2O3 and diamond have been used. It was observed that aluminium had a tendency to wet uncoated carbide (94%WC + 6%Co) inserts. However, wetting was more pronounced when surface was enriched with cobalt. In contrast, wetting of aluminium was less when the WC content of the carbide tool surface increased. Coatings like TiC, TiN or Al2O3 could not show pure non-wetting characteristics for aluminium. The aluminium appeared to dissolve the coatings in different degrees. On the other hand, coating of diamond exhibited inertness towards aluminum leading to non-wetting behaviour. Turning test with aluminium indicated heavy material built up on uncoated (94%WC + 6%Co) tool. Built up edge formation could not be avoided when carbide inserts with a top coating of TiC, TiN, Al2O3 were engaged in machining of aluminium. However, the non-wetting characteristic of diamond coating was reflected during machining of aluminium. The chips slided smoothly over the rake face leaving no trace of edge built up.  相似文献   

9.
This paper evaluates laser-assisted machining (LAM) as an economically viable process for manufacturing precision aluminum oxide ceramic parts. Because it is locally heated by an intense laser source prior to material removal, LAM leads to higher material removal rates, as well as improved control of workpiece properties and geometry. To assess the feasibility of the LAM process and better understand its governing physical phenomena, experiments were conducted to obtain different measures of surface roughness for Al2O3 workpieces machined by laser-assisted turning using a Nd:YAG laser.The experimental results were analyzed using the Taguchi method, which facilitated identification of optimum machining conditions. The findings indicate that rotational speed, with a contribution percentage as high as 42.68%, had the most dominant effect on LAM system performance, followed by feed, depth of cut, and pulsed frequency. LAM's most important advantage is its ability to produce much better workpiece surface quality than does conventional machining, together with larger material removal rates (MRR) and moderate tool wear.  相似文献   

10.
Refrigerated cooling air cutting of difficult-to-cut materials   总被引:1,自引:1,他引:1  
One approach to enhance machining performance is to apply cutting fluids during cutting process. However, the use of cutting fluids in machining process has caused some problems such as high cost, pollution, and hazards to operator's health. All the problems related to the use of cutting fluids have urged researchers to search for some alternatives to minimize or even avoid the use of cutting fluids in machining operations. Cooling gas cutting is one of these alternatives. This paper investigates the effect of cooling air cutting on tool wear, surface finish and chip shape in finish turning of Inconel 718 nickel-base super alloy and high-speed milling of AISI D2 cold work tool steel. Comparative experiments were conducted under different cooling/lubrication conditions, i.e. dry cutting, minimal quantity lubrication (MQL), cooling air, and cooling air and minimal quantity lubrication (CAMQL). For this research, composite refrigeration method was adopted to develop a new cooling gas equipment which was used to lower the temperature of compressed gas. The significant experimental results were: (i) application of cooing air and CAMQL resulted in drastic reduction in tool wear and surface roughness, and significant improvement in chip shape in finish turning of Inconel 718, (ii) in the high-speed milling of AISI D2, cooling air cutting presented longer tool life and slightly higher surface roughness than dry cutting and MQL. Therefore, it appears that cooling air cutting can provide not only environment friendliness but also great improvement in machinability of difficult-to-cut materials.  相似文献   

11.
Enhancement of ECDM efficiency and accuracy by spherical tool electrode   总被引:1,自引:0,他引:1  
Electrochemical discharge machining (ECDM) is an emerging non-traditional processing technique that involves high-temperature melting and accelerated chemical etching under the high electrical energy discharged. However, there are still several obstacles to overcome. First, both machining time and hole entrance diameter were found to increase with increasing machining depth. In particular, the increase becomes drastic when machining depth exceeds 250 μm. In addition, achieving both high efficiency and accuracy in drilling a through hole in hard and brittle materials by ECDM poses even greater difficulty. To solve the above problems, this study proposed using a tool electrode with a spherical end whose diameter (150 μm) is larger than that of its cylindrical body (100 μm). Experimental results show that the curve surface of the spherical tool electrode reduces the contact area between the electrode and the workpiece, thus facilitating the flow of electrolyte to the electrode end, and enables rapid formation of gas film, resulting in efficient micro-hole drilling. Moreover, the curve surface does not cause excessive concentration of current density; and hence, bubbles grow at a more uniform speed; thus, increasing the discharge frequency. Comparison between machining depth of 500 μm achieved by conventional cylindrical tool electrode and the proposed spherical tool electrode shows that machining time was reduced by 83% while hole diameter was also decreased by 65%.  相似文献   

12.
The thermally assisted machining of yttria-stabilized tetragonal zirconia polycrystal using a cutting tool heated with induction heating was proposed. Although the conventional thermally assisted machining cannot be applied to drilling, the proposed method can be. Heat transfer from the heated cutting tool to the workpiece was simulated analytically, and the result showed that heating of the tool up to 500 °C produced an increase of 150–400 °C in the workpiece temperature. Cutting experiments demonstrated an improvement in machinability.  相似文献   

13.
To address the need to produce sub-50 nm scale features for manufacturing of nano/bio devices and systems, a nanoscale electro-machining (nano-EM) process is being studied. This paper reports unique field induced effects on a tungsten tool. During machining, the tungsten atoms leave the active tool tip in the form of clusters. Upon machining, the tool tip end radius was sharper (∼20 nm after in comparison with ∼35 nm before). The tool surface was chemically modified to a nanocrystalline matrix of tungsten oxide and tungsten carbide. The tool sharpening and the formation of the nanocrystalline matrix are expected to prolong the tool life in the nano-EM process in a manufacturing environment.  相似文献   

14.
Laser-assisted machining (LAM), an alternative method of fabricating difficult-to-machine materials, uses primarily laser power to heat the local area (without necessarily evaporating or melting any material) before the material is removed. It not only efficiently reduces the cutting force during the manufacturing process but also improves the machining characteristics and geography with regard to difficult-to-machine materials, especially structural ceramics.This study on the application of laser-assisted machining to Al2O3 ceramics examines the measurements of cutting force and workpiece surface temperature as well as surface integrity and tool wear. Specifically, it uses the lattice Boltzmann method (LBM) to calculate the temperature distribution inside the ceramic workpiece during the LAM process and ensure that the laser energy causes no subsurface damage. The experimental results reveal that the LAM process efficiently reduces the cutting force by 22% (feed force) and 20% (thrust force) and produces better workpiece surface quality than conventional planing.  相似文献   

15.
A new approach for machining of Inconel 718 is presented in this paper. It combines traditional turning with cryogenically enhanced machining and plasma enhanced machining. Cryogenically enhanced machining is used to reduce the temperatures in the cutting tool, and thus reduces temperature-dependent tool wear to prolong tool life, whereas plasma enhanced machining is used to increase the temperatures in the workpiece to soften it. By joining these two non-traditional techniques with opposite effects on the cutting tool and the workpiece, it has been found that the surface roughness was reduced by 250%; the cutting forces was decreased by approximately 30–50%; and the tool life was extended up to 170% over conventional machining.  相似文献   

16.
Turning with a spinning insert called actively driven rotary tool (ADRT), where the cutting tool revolves by a powered and programmable spindle, is investigated from the thermal aspects. Dry and MQL external turning tests of austenitic stainless steel (AISI 304) and heat-resistant Ni-based alloy (Inconel 718) are carried out. The tool temperature at the flank face is measured using a newly assembled fiber-coupled two-color pyrometer. In dry turning of AISI 304 steel, the tool temperature decreases from approximately 730 °C to 640 °C as the tool rotation speed increases from 10 m/min to 200 m/min.  相似文献   

17.
The effect of temperature and Ca ions on the corrosion behavior of hardmetals was investigated in 0.1 M NaOH and 0.05 M Ca(OH)2 alkaline electrolytes using impedance spectroscopy, potentiodynamic polarization and surface analytical techniques. It was found that calcium containing alkaline solutions efficiently decrease the anodic currents up to 5 times by forming a calcium containing deposit on the top of the WC–Co hardmetal surface, which remains stable even at higher temperatures (40 °C and 60 °C). This positive influence of Ca ions is predominant under polarization in the range from 0 to +0.85 V (Ag/AgCl) but is not apparent under OCP conditions. In NaOH, however, the corrosion resistance strongly decreases at higher temperatures as compared with the room temperature. At the slightly elevated temperature in 0.1 M NaOH the Co binder phase loses its passivity and is almost completely washed out of the compound material. A WC skeleton remains on the surface and hence the ductility in the hardmetal is lost. In the end, the material could completely fail under such operating conditions. Also the Ni alloyed binder loses its strong passivation ability at the elevated temperatures.  相似文献   

18.
Ultra precision diamond turning is usually applied for processing non ferrous metals, plastics and a few single crystal materials. The machining of hard and brittle material, such as nano crystalline, binderless tungsten carbide has only been investigated within a few publications on a theoretical basis and applying nano indenting. Therefore the goal of this paper is to qualify the ultra precision diamond turning technique for processing nano crystalline, binderless tungsten carbide applying the real process conditions identifying optimal parameters. A potential application of this process would be the mold manufacturing for precision glass molding. Within a systematical procedure the ductile to brittle transition is analyzed as well as the tool wear, varying both, tool geometry and processing parameters. Based on material analysis the critical depth of cut for the material was calculated at 165 nm. This value could be validated in the experiments at the optimal cutting speed of 50 m/min with a feed of 1 μm. Least tool wear was observed at a tool radius of 0.4 mm and a rake angle of −20°. The experiments demonstrate the strong influence of the processing conditions on the achieved results.  相似文献   

19.
Cutting performance of cemented carbide drills with various coatings was investigated in detail under minimum quantity lubrication (MQL) conditions. An advanced dual-channel Bielomatik MQL system was installed in an Okuma machining center. A specially designed Mapal drill was selected for the studies to eliminate voids between the tool and the MQL tool holder that can interfere with mist delivery. Using this design, a mist flow rate of 25 mL/min was achieved through the drills.Progressive frictional/wear studies were performed. Coated drills were tested in three stages (50, 500, and 7000 holes). During short term drilling tests (50-hole level), cutting performance was comprehensively evaluated for a range of coatings by measuring several in-situ frictional characteristics of the cutting process, such as cutting forces, and related characteristics including, chip type and undersurface morphology. Wear patterns of the cutting tools were indentified as well. Selected coatings were tested further. The best cutting performance based on the 500-hole testing was found with the diamond coating. However, excessive brittleness of the entire coating/substrate system led to premature failure of the drill after 4300 holes. The low-hydrogen DLC coating that also showed promising cutting performance based on the 500-hole test was selected as the next candidate for further testing. Drills with low-hydrogen DLC coating achieved 7200 drilled holes with a flank wear of only 110 μm and moderate intensity of workpiece material pickup. This results in a better surface finish of drilled holes.Based on this study, the Mapal drills with the low-hydrogen DLC coating provided comparable machining performance to that possible with traditional wet machining, but with the environmental and cost advantages possible with MQL.  相似文献   

20.
激光加热辅助切削因其工艺空间大、经济性高、可得到高质量表面成为工程陶瓷等脆硬材料的高效加工方式。通过改变激光功率和切削深度两组单因素试验,研究了激光加热辅助切削氮化硅陶瓷(Si3N4)不同加工状态下表面粗糙度值的变化规律。结果表明:材料被塑性去除时,Ra和Rq值均小于被脆性去除和产生热损伤时得到的值。未产生热损伤时,Ra和Rq值随工件软化程度增大而减小。在塑性去除模式下,轮廓高度幅值曲线更加趋于对称和正态分布,表面轮廓更加精细。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号