首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Control of homoeologous chromosomal pairing in hexaploid wheat stems from a balance between a number of suppressor and promoter genes. This study used centromeric behaviour as a tool to investigate the mechanism. Fluorescent in situ hybridization employing centromeric and telomeric sequences as probes was applied to pollen mother cells of wheat and wheat/alien hybrids having different pairing gene combinations. It showed: association of centromeres during pre-meiotic interphase; decondensation of centromeric structure; sister chromatid disjunction of univalent chromosomes in homoeologous pairing situations at anaphase I; and centromeric stretching between univalent sister chromatids in wheat/rye hybrids deficient for pairing genes. The implications of these results are discussed.  相似文献   

2.
A dispersed, rye-specific element has been used to isolate clones of rye origin from wheat plants containing only a single rye chromosome arm or segment. In this way a set of 23 YAC clones has been isolated from the short arm of rye chromosome 1 (1RS). This technique was extended to isolate clones from a small region of 1RS that contains a large number of agronomically important genes. The targeted cloning method allowed the isolation of 26 classes of lambda clones representing about 5% of the region. Ten of the lambda clones could be mapped to segments within this region. A third example of the application of this technique involved the isolation of clones from a very small but fully functional rye chromosome, the midget chromosome. These clones have allowed the confirmation of the origin of the midget from 1RL, and may provide a tool for the isolation of structural elements of cereal chromosomes. This technique allows the identification of clone libraries for any rye chromosome or chromosome arm, since substitution, addition and translocation lines are available for all rye chromosomes. Furthermore, the technique allows isolation of clones derived from segments of the rye genome recombined into wheat. The method is technically simple and both lambda and YAC libraries can be constructed. Synteny between the genomes of the cereals allows region-specific libraries from rye to be used to target regions of the wheat and barley genomes.  相似文献   

3.
Although some blood parameters have been suggested to modulate in-vitro induction of sister chromatid exchanges by 1,2:3,4-diepoxybutane (DEB), a metabolite of 1,3-butadiene, the increased sensitivity has largely been assigned to a homozygous deletion of glutathione S-transferase T1 gene (GSTT1 null genotype). However, some DEB-sensitive individuals have been shown to be GSTT1 positive (having at least one undeleted GSTT1 allele). To examine potential causes for this overlap, we evaluated the effect of GSTM1, GSTP1, and GSTT1 genotypes, together with various life-style and blood parameters, on the DEB induction of sister chromatid exchanges and cells with chromosomal aberrations (aberrant cells) in lymphocyte cultures of 115 and 62 human donors, respectively. Our results supported the important role of the GSTT1 genotype in DEB sensitivity; 76% of cultures from GSTT1 null donors but only 4% of those from GSTT1 positive donors were DEB-sensitive, as defined by sister chromatid exchange measurements. The GSTT1 genotype also clearly affected DEB-induced aberrant cells, 92% of GSTT1 null and 8% of GSTT1 positive donors being sensitive to DEB. All individuals showing a high response to DEB in both sister chromatid exchange and aberrant cell analyses were GSTT1 null. Baseline aberrant cell measurements but not sister chromatid exchange measurements were marginally higher among GSTT1 null donors compared with GSTT1 positive donors. GSTM1 and GSTP1 genotypes had no influence on these cytogenetic end-points. Blood transaminases, gamma-glutamyl transferase, urea, creatinine and white blood cell count showed a clear negative association with DEB-induced aberrant cells, whereas wine drinkers had more aberrant cells than non-drinkers. A higher sister chromatid exchange-response to DEB was observed in lymphocytes from women and smokers than from men and non-smokers, respectively. Erythrocyte count correlated negatively with DEB-induced sister chromatid exchanges. Thus, a variety of parameters seemed to modulate the individual DEB-sensitivity together with the GSTT1 genotype. Although the known contributing factors accounted for a considerable part of individual variability in sister chromatid exchanges (59.4%) and aberrant cells (46.7%) in DEB treatment, they did not, however, fully explain the overlap in cytogenetic response between GSTT1 positive and null individuals.  相似文献   

4.
Genomic imprinting of rye origin rDNA sequences in triticale is modulated by DNA methylation responsible for ontogenic expression patterns of those sequences. Considering the dynamic nature of these phenomena, we evaluated the influence of plant development on the inheritance of modified rye rDNA expression patterns. DNA hypomethylation was induced in triticale by 5-azacytidine (5AC) treatments at distinct developmental stages of M1 plants, and expression patterns were analysed in M2. The activity of rye origin rRNA genes in progeny of untreated and 5AC-treated plants was evaluated by silver staining in meristematic root tip cells and in meiocytes at diplotene. In the progeny of 5AC-treated plants, a significant increase in rye rDNA expression was observed, contrasting with the residual activity in untreated plants. Significant differential effects of 5AC treatments were observed in M2 plants and correlated with the M1 plant developmental stage in which DNA hypomethylation was induced. Hypotheses to explain the origin of those differences are discussed here.  相似文献   

5.
A 39 year old male with primary infertility was diagnosed as having Klinefelter syndrome by conventional cytogenetic analysis, which also showed an abnormal chromosome 12. Fluorescence in situ hybridisation (FISH) analysis of the aberrant chromosome using a 12 specific centromeric probe showed a break in the alphoid repeats followed by an inversion within the short arm, resulting in a pseudodicentric chromosome. Further FISH analyses using telomeric and subtelomeric probes showed that the other breakpoint was in the subtelomeric region of the short arm. The karyotype is designated 47,XXY,inv(12)(p10p13.3). To our knowledge this is the first report of a case of "centric inversion".  相似文献   

6.
The Ph1 locus in wheat influences homo(eo)logous chromosome pairing. We have analysed its effect on the behaviour and morphology of two 5RL rye telosomes in a wheat background, by genomic in situ hybridisation (GISH), using rye genomic DNA as a probe. Our main objective was to study the effect of different alleles of the Ph1 locus on the morphology and behaviour of the rye telosomes in interphase nuclei of tapetal cells and in pollen mother cells at early stages of meiosis. The telosomes, easily detectable at all stages, showed a brightly fluorescing chromomere in the distal region and a constriction in the proximal part. These diagnostic markers enabled us to define the centromere and telomere regions of the rye telosomes. In the presence of functional copies of Ph1, the rye telosomes associated at pre-leptotene, disjoined and reorganised their shape at leptotene, and became fully homologously paired at zygotene - pachytene. In plants without functional alleles (ph1bph1b), the rye telosomes displayed an aberrant morphology, their premeiotic associations were clearly disturbed and their pairing during zygotene and pachytene was reduced and irregular. The Ph1 locus also influenced the behaviour of rye telosomes in the interphase nuclei of tapetal cells: in Ph1Ph1 plants, the rye telosomes occupied distinct, parallel-oriented domains, whereas in tapetal nuclei of ph1bph1b plants they were intermingled with wheat chromosomes and showed a heavily distorted morphology. The results shed new light on the effect of Ph1, and suggest that this locus is involved in chromosome condensation and/or scaffold organisation. Our explanation might account for various apparently contradictory and pleiotropic effects of this locus on both premeiotic associations of homologues, the regulation of meiotic homo(eo)logous chromosome pairing and synapsis, the resolution of bivalent interlockings and centromere behaviour.  相似文献   

7.
Patterns of rye rDNA organization in interphase nuclei were studied through the use of in situ hybridization in spreads of root meristem cells from plants with and without B chromosomes (Bs). In cells from plants without Bs each rDNA locus is organized as a single perinucleolar knob of condensed chromatin with decondensed chromatin inside the nucleolus. In plants with Bs there is a marked modification of the pattern, found in more than 23% of nuclei, which involves several regions of condensed chromatin interspersed with decondensed chromatin inside the nucleolus. This B-induced alteration in rDNA interphase organization suggests a change in expression of the rRNA genes located on the A chromosomes probably related to the reduction in nuclear RNA observed previously in plants with Bs. The influence of the Bs on the expression of A chromosome genes, through rearrangement of interphase chromatin, could provide the basis of an explanation for some of the known phenotypic effects of B chromosomes in rye.  相似文献   

8.
CRP1, a Drosophila nuclear protein that can catalyze decondensation of demembranated Xenopus sperm chromatin was cloned and its primary structure was deduced from cDNA sequence. Alignment of deduced amino acid sequence with published sequences of other proteins revealed strong homologies to Xenopus nucleoplasmin and NO38. CRP1 is encoded by one or several closely related genes found at a single locus, position 99A on the right arm of chromosome 3. CRP1 mRNA is expressed throughout Drosophila development; it is highest during oogenesis and early embryogenesis. mRNA levels correlate closely with levels of protein expression measured previously. Results of chemical crosslinking indicate that CRP1 is either tetrameric or pentameric; similar ambiguity was revealed by direct visualization using scanning transmission electron microscopy. Consistent with previously published results, parallel crosslinking studies of Xenopus nucleoplasmin suggested a pentameric structure. Scanning transmission electron microscopic examination after negative staining revealed that CRP1 and Xenopus nucleoplasmin are morphologically similar. CRP1 is able to substitute for nucleoplasmin in Xenopus egg extract-mediated sperm chromatin decondensation. In vitro, CRP1-induced decondensation is accompanied by direct binding of CRP1 to chromatin.  相似文献   

9.
Heterochromatin protein 1 (HP1) of Drosophila and its homologs in vertebrates are key components of constitutive heterochromatin. Here we provide cytological evidence for the presence of heterochromatin within a euchromatic chromosome arm by immunolocalization of HP1 to the site of a silenced transgene repeat array. The amount of HP1 associated with arrays in polytene chromosomes is correlated with the array size. Inverted transposons within an array or increased proximity of an array to blocks of naturally occurring heterochromatin may increase transgene silencing without increasing HP1 labeling. Less dense anti-HP1 labeling is found at transposon arrays in which there is no transgene silencing. The results indicate that HP1 targets the chromatin of transposon insertions and binds more densely at a site with repeated sequences susceptible to heterochromatin formation.  相似文献   

10.
The loss of sister chromatid cohesion triggers anaphase spindle movement. The budding yeast Mcd1/Scc1 protein, called cohesin, is required for associating chromatids, and proteins homologous to it exist in a variety of eukaryotes. Mcd1/Scc1 is removed from chromosomes in anaphase and degrades in G1. We show that the fission yeast protein, Mis4, which is required for equal sister chromatid separation in anaphase is a different chromatid cohesion molecule that behaves independent of cohesin and is conserved from yeast to human. Its inactivation in G1 results in cell lethality in S phase and subsequent premature sister chromatid separation. Inactivation in G2 leads to cell death in subsequent metaphase-anaphase progression but missegregation occurs only in the next round of mitosis. Mis4 is not essential for condensation, nor does it degrade in G1. Rather, it associates with chromosomes in a punctate fashion throughout the cell cycle. mis4 mutants are hypersensitive to hydroxyurea (HU) and UV irradiation but retain the ability to restrain cell cycle progression when damaged or sustaining a block to replication. The mis4 mutation results in synthetic lethality with a DNA ligase mutant. Mis4 may form a stable link between chromatids in S phase that is split rather than removed in anaphase.  相似文献   

11.
12.
Disorder in sister chromatid separation can lead to genome instability and cancer. A temperature-sensitive S. pombe mis6-302 frequently loses a minichromosome at 26 degrees C and abolishes equal segregation of regular chromosomes at 36 degrees C. The mis6+ gene is essential for viability, and its deletion results in missegregation identical to mis6-302. Mis6 acts before or at the onset of S phase, and mitotic missegregation defects are produced only after the passage of G1/S at 36 degrees C. Mis6 locates at the centromeres throughout the cell cycle. In the mutant, positioning of the centromeres becomes abnormal, and specialized chromatin in the inner centromeres, which give the smear micrococcal nuclease pattern in wild type, is disrupted. The ability to establish correct biorientation of sister centromeres in metaphase cells requires the Mis6-containing chromatin and originates during the passage of G1/S.  相似文献   

13.
Since we had subdivided the cell cycle into 11 stages--four for mitosis and seven for the interphase--and since we had experience in detecting DNA in the electron microscope (EN) by the osmium-amine procedure of Cogliati and Gauthier (Compt. Rend. Acad. Sci., 1973;276:3041-3044), we combined the two approaches for the analysis of DNA-containing structures at all stages of the cell cycle. Thin Epon sections of formaldehyde-fixed mouse duodenum were stained by osmium-amine for electron microscopic examination of the stages in the 12.3-hr long cell cycle of mouse duodenal crypt columnar cells. In addition, semi-thin Lowicryl sections of mouse duodenal crypts and cultured rat kidney cells were stained with the DNA-specific Hoechst 33258 dye and examined in the fluorescence microscope. The DNA detected by osmium-amine is in the form of nucleofilaments, seen at high magnification as long rows of 11 nm-wide rings (consisting of stained DNA encircling unstained histones). At all stages of the cycle as well as in nondividing cells, nucleofilaments are of three types: 'free,' 'attached' to chromatin accumulations, and 'compacted' in all chromatin accumulations, the form of dense spirals within. At stage I of the cycle, besides free and attached nucleofilaments, compacted ones are observed in the three heterochromatin forms (peripheral, nucleolus-associated, clumped). Soon after the S phase begins, chromatin 'aggregates' appear, which are small at stage II, mid-sized at stage III, and large at stage IV. Chromatin 'bulges' also appear at stage III and enlarge at stage IV, while heterochromatins disappear. At stage V, aggregates and bulges accrete into 'chromomeres,' a process responsible for the apparent chromosome condensation observed at prophase. The chromomeres gradually line up in rows and, at stage VIa (prometaphase), approach one another within each row and coalesce to build up the metaphase chromosomes which are fully formed at stage VIb (metaphase). Daughter chromosomes arising at stage VII (anaphase) are eventually packed into a chromosomal mass at each pole of the cell. During stage VIII (telophase), the chromosomal mass is split into large chunks. In the course of the G1 phase, the chunks thin out to give rise to irregular 'bands' at stage IX, the bands are then cleaved into central and peripheral fragments at stage X, and finally the central fragments are replaced by free nucleofilaments and clumps at stage XI, while the peripheral fragments are replaced by peripheral heterochromatin. The "nucleoli" at stages I-III are associated with stained heterochromatin but otherwise appear as unstained lucent areas, except for weakly stained patches composed of histone-free DNA filaments. During stage IV, nucleoli lose patches and associated heterochromatin, while weakly lucent, pale vesicles appear within nucleoli and in the nucleoplasm. By the end of substage VIa, nucleoli generally disappear, while pale vesicles persist around the chromosomes appearing at substage VIb. At stages VIII and IX, the vesicles seem to become strongly lucent and, at stages IX and X, they associate and fuse to yield homogeneous lucent areas, the 'prenucleolar bodies,' which include histone-free DNA patches. During stage XI, groups of these bodies associate to give rise to nucleoli. In conclusion, the cell cycle DNA changes can be classified into 4 broad periods (Fig. 6): 1) Stage I is a 2-hr long interphase "pause," during which the stained DNA shows no signs of either chromosome condensation or decondensation, while the overall nuclear pattern is similar to that in nondividing cell nuclei. Nucleoli are fully developed. 2) From stage II to VIa, the "chromosome condensation" period extends over about 7 hr, during which the events are interpreted as follows. Throughout the S phase (stages II-IV), newly-synthesized segments of nucleofilaments approach one another, adhere and thus build aggregates and later bulges on nuclear matrix sites. (ABSTRACT TRUNCATED)  相似文献   

14.
Chromatid breaks are thought to result from DNA double-strand breaks (dsb) but the mechanisms are not yet understood. The early (but still prevailing) 'breakage-first' hypothesis fails to explain the large size of chromatid breaks; many of which are estimated to represent the apparent loss of between 15 and 45 Mbp (up to 30% of an average chromatid). The alternative 'exchange' hypothesis of Revell has potential for explaining the large sizes of deletions, but assumes the interaction of two lesions which therefore predicts a quadratic dependence of chromatid breaks on radiation dose. The exchange hypothesis is not tenable for mammalian cells since chromatid breaks are observed to be induced linearly with dose in both human and rodent cells. An alternative 'signal' model of chromatid breaks is outlined whereby a single dsb, occurring within a large looped chromatin domain, is signalled (possibly by molecules such as DNAPK or ATM protein) and triggers the cell to undergo a recombinational exchange, either within a chromatid or between sister chromatids. If incomplete, such recombinational exchanges would appear as chromatid breaks at metaphase. It is suggested that the large looped chromatin domains could be equivalent to one or more likely several replication 'factories' in which the DNA processing enzymes required for exchange formation would be located.  相似文献   

15.
We report on a familial three way translocation involving chromosomes 3, 6, and 15 identified by prometaphase banding and fluorescence in situ hybridisation (FISH). Two mentally retarded sibs with different phenotypic abnormalities, their phenotypically normal sister and mother, and two fetuses of the phenotypically normal sister were analysed. The terminal regions of chromosomes 3q, 6q, and 15q were involved in a reciprocal translocation, in addition to a paracentric inversion of the derivative chromosome 15. Conventional cytogenetic studies with high resolution GTG banding did not resolve this rearrangement. FISH using whole chromosome paints (WCPs) identified the chromosomal regions involved, except the aberrant region of 3q, which was undetectable with these probes. Investigation of this region with the subtelomeric FISH probe D3S1445/D3S1446 showed a balanced karyotype, 46,XX,t(3;15;6) (q29;q26.1;q26), inv der(15) (q15.1q26.1) in two adult females and one fetus. It was unbalanced in two sibs, showing two different types of unbalanced translocation resulting in partial trisomy 3q in combination with partial monosomy 6q in one patient and partial trisomy 15q with partial monosomy 6q in the other patient and one fetus. These represent apparently new chromosomal phenotypes.  相似文献   

16.
Three clones for chicken chromobox proteins were obtained from liver and ovary cDNA libraries. pCHCB1 and pCHCB2 encode polypeptides showing 96 and 95% identity with mouse M31 and M32, respectively, which are homologues of Drosophila heterochromatin protein 1 (HP1), and pCHCB3 encodes a polypeptide whose sequences of chromobox and C-terminal region show high-level similarities with those of mouse M33, Drosophila polycomb (Pc) protein, and Xenopus Pc homologue. When these cDNAs were expressed in female chicken embryonic fibroblasts (CEFs) as GFP-fused or HA-tagged proteins, all three proteins were found to be localized in nuclei. Among them, CHCB1 associates with brightly stained spots with 4', 6-diamidino-2-phenylindole (DAPI), suggesting its accumulation on heterochromatins. One of those spots was identified as W-heterochromatin. When CHCB1 lacking the N-terminal basic/acidic region or a part of the chromobox region was overexpressed in CEFs, W-heterochromatin became partially or extensively decondensed in the majority of nuclei. Overexpression of CHCB3 lacking a part of the chromobox did not cause decondensation of W-heterochromatin. Specific antisera raised against a part of CHCB1 or CHCB2, produced in Escherichia coli, detected protein species having apparent molecular masses of 25 kDa or 22 plus 23 kDa, respectively, in the subnuclear fraction containing the majority of chromatin from female chicken MSB-1 cells.  相似文献   

17.
18.
Chlamydia trachomatis is an obligate intracellular pathogen, long recognized as an agent of blinding eye disease and more recently as a common sexually transmitted infection. Recently, two eukaryotic histone H1-like proteins, designated Hc1 and Hc2, have been identified in Chlamydia. Expression of Hc1 in recombinant Escherichia coli produces chromatin condensation similar to nucleoid condensation observed late in the parasite's own life cycle. In contrast, chromatin decondensation, observed during the early life cycle, accompanies down-regulation and nondetection of Hc1 and Hc2 among internalized organisms. We reasoned that the early upstream open reading frame (EUO) gene product might play a role in Hc1 degradation and nucleoid decondensation since it is expressed very early in the chlamydial life cycle. To explore this possibility, we fused the EUO coding region between amino acids 4 and 177 from C. trachomatis serovar Lz with glutathione S-transferase (GST) and examined the effects of fusion protein on Hc1 in vitro. The purified fusion protein was able to digest Hc1 completely within 1 h at 37 degrees C. However, GST alone exhibited no Hc1-specific proteolytic activity. The chlamydial EUO-GST gene product also cleaves very-lysine-rich calf thymus histone H1 and chicken erythrocyte histone H5 but displays no measurable activity towards core histones H2A, H2B, H3, and H4 or chlamydial RNA polymerase alpha-subunit. This proteolytic activity appears sensitive to the serine protease inhibitor 4-(2-aminoethyl)-benzenesulfonyl fluoride hydrochloride (AEBSF) and aspartic protease inhibitor pepstatin but resistant to high temperature and other broad-spectrum protease inhibitors. The proteolytic activity specified by the EUO-GST fusion product selectively digested the C-terminal portion of chlamydial Hc1, the domain involved in DNA binding, while leaving the N terminus intact. At a molar equivalent ratio of 1:1 between Hc1 and DNA, the EUO gene product cleaves Hc1 complexed to DNA and this cleavage appears sufficient to initiate dissociation of DNA-Hc1 complexes. However, at a higher molar equivalent ratio of Hc1/DNA (10:1), there is partial protection conferred upon Hc1 to an extent that prevents dissociation of DNA-Hc1 complexes.  相似文献   

19.
Chromosomal aberrations, sister chromatid exchanges (SCEs), replication indices and micronuclei in peripheral blood lymphocytes were analysed among 27 nonsmoking power linesmen with considerable long-term exposure to 50-Hz electromagnetic (EM) fields, and among 27 nonsmoking telephone linesmen serving as a reference group, pairwise matched with the exposed workers for age and geographical region. Blood samples from the two groups were collected, cultured and analysed in parallel. No differences between the groups were observed on analysis of SCEs, replication indices or micronuclei. However, the mean rate of lymphocytes with chromatid-type breaks was higher among the power linesmen (0.96% gaps excluded, 1.41% gaps included) than among the reference group (0.44% and 0.70%, respectively). The excess of aberrant cells was concentrated among those power linesmen who had worked earlier in their life. Although the interpretation is somewhat complicated by the confounding effect of previous smoking, these results suggest that exposure to 50-Hz EM fields is associated with a slight increase in chromatid breaks.  相似文献   

20.
Homozygosity for a null mutation in the proliferation disrupter (prod) gene of Drosophila causes decreased mitotic index, defects of anaphase chromatid separation, and imperfect chromosome condensation in larval neuroblasts and other proliferating cell populations. The defective condensation is especially obvious near the centromeres. Mutant larvae show slow growth and massive cell death in proliferating cell populations, followed by late larval lethality. Loss of prod function in mitotic clones leads to the arrest of oogenesis in the ovary and defective cuticle formation in imaginal disc derivatives. The prod gene encodes a novel 301-amino-acid protein that is ubiquitously expressed and highly concentrated at the centric heterochromatin of the second and third mitotic chromosomes, as well as at > 400 euchromatic loci on polytene chromosomes. We propose that Prod is a nonhistone protein essential for chromosome condensation and that the chromosomal and developmental defects are caused by incomplete centromere condensation in prod mutants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号