首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As part of the Lifecycle Innovative Financing Evaluation initiative, the San Ysidro Bridge along U.S. Route 550 will be monitored throughout a 10?year warranty period to determine changes in deflection, stiffness, and load-carrying capacity. This paper discusses an initial live-load test on the San Ysidro Bridge as well as a subsequent load test on a full-scale single lane test bridge. The two load tests in conjunction with finite element modeling were used to determine the load rating for both shear and moment of the San Ysidro Bridge. This load rating was then compared with the load rating using the distribution factors from the American Association of State Highway and Transportation Officials (AASHTO) Standard and Load and Resistance Factor Design Specifications. According to both AASHTO specifications, the interior girder shear controlled the load rating of the San Ysidro Bridge. Using the finite element modeling scheme of frame and shell elements the interior girder moment was found to control the design. This load rating will be used as a baseline for comparison with future load ratings throughout the warranty period.  相似文献   

2.
A crack condition evaluation method is proposed that identifies the damaged state of deteriorated reinforced concrete (RC) girders on bridges directly on-site. This nondestructive testing approach is based on stress wave propagation theory and can identify the profile of flexural crack tips inside RC girders. A damage index is further determined by comparing the measured crack tip and the theoretical neutral axis of a girder. This index can be utilized to analyze the current loading capacity of deteriorated RC girders according to the AASHTO-LRFR Manual (AASHTO 2003), Manual for Condition Evaluation and Load and Resistance Factor Rating of Highway Bridge, Washington, D.C. Experimental results demonstrate that the position of crack tip can be accurately located.  相似文献   

3.
Curvature greatly complicates the behavior of horizontally curved steel plate girders used in bridge superstructures. The warping stress gradient across the width of I-girder flange plates reduces the vertical bending stress at which the flange plate buckles. The 2007 AASHTO Load and Resistance Factor Design Specifications eliminate the shortcomings of the 2003 AASHTO Guide Specifications for Horizontally Curved Bridges by unifying the flexural design of tangent and curved I-girder bridges. This paper evaluates flange local buckling resistance based upon theoretical and analytical models that consider the effect of stress gradient across the flange coupled with the influence of rotational resistance provided by the web. The developed equations are verified using the finite element method, and the potential impact is demonstrated using the design example presented in the Guide Specifications.  相似文献   

4.
A sound repair on a 40 year old four-span prestressed concrete girder bridge is performed with an innovative strengthening method using prestressed carbon fiber reinforced polymer (CFRP) sheets. In fact, this application is the first North American field application of its type. An adequate repair design is conducted based on the American Association of State Highway and Transportation Officials Load Resistance Factor Design (AASHTO LRFD) and the Canadian Highway Bridge Design Code. To ensure the feasibility of the site application using prestressed CFRP sheets, tests are conducted and closed-form solutions are developed to investigate the behavior of the anchor system that is necessary for prestressing the CFRP sheets. A full-scale finite-element analysis (FEA) is performed to investigate the flexural behavior of the bridge in the undamaged, damaged, and repaired states. The AASHTO LRFD exhibits conservative design properties as compared to the FEA results. The repaired bridge indicates that the flexural strength of the damaged girder has been fully recovered to the undamaged state, and the serviceability has also been improved. An assessment based on the AASHTO rating factor demonstrates the effectiveness of the repair.  相似文献   

5.
This paper presents the results of a parametric study that investigated the effect of multilanes and continuity on wheel load distribution in steel girder bridges. Typical one- and two-span, two-, three-, and four-lane, straight, composite steel girder bridges were selected for this study. The major bridge parameters chosen for this study were the span length, girder spacing, one- versus two-spans, and the number of lanes. These parameters were varied within practical ranges to study their influence on the wheel load distribution factors. A total of 144 bridges were analyzed using the finite-element method. The computer program, SAP90, was used to model the concrete slab as quadrilateral shell elements and the steel girders as space frame members. Simple supports were used to model the boundary conditions. AASHTO HS20 design trucks were positioned in all lanes of the one- and two-span bridges to produce the maximum bending moments. The calculated finite-element wheel load distribution factors were compared with the AASHTO and the National Cooperative Highway Research Program (NCHRP) 12-26 formulas. The results of this parametric study agree with the newly developed NCHRP 12-26 formula and both were, in general, less than the empirical AASHTO formula (S∕5.5) for longer span lengths [>15.25 m (50 ft)] and girder spacing >1.8 m (6 ft). This paper demonstrates that the multiple lane reduction factors are built into the newly developed distribution factors for steel girder bridges that were presented in the NCHRP 12-26 final report. It should be noted that AASHTO LRFD contains a similar expression that results in a value that is 50% of the value in the equations developed as a part of NCHRP 12-26. This is due to the fact that AASHTO LRFD consider the entire design truck instead of half-truck (wheel loads) as the case in the NCHRP 12-26 report and the AASHTO Standard Specifications for Highway Bridges. Therefore, this paper supports the use of the new distribution factors for steel girder bridges developed as a part of NCHRP 12-26 and consequently the distribution factors presented in the AASHTO LRFD Bridge Design Specifications.  相似文献   

6.
This report summarizes the comparative design of a single-span AASHTO Type III girder bridge under the AASHTO Standard Specification for Highway Bridges, 16th Edition, and the AASHTO LRFD Bridge Design Specification. The writers address the differences in design philosophy, calculation procedures, and the resulting design. Foundation design and related geotechnical considerations are not considered. The LRFD design was similar in most respects to the Standard Specification design. The significant differences were: (1) increased shear reinforcement; (2) increased reinforcement in the deck overhang; and (3) increased reinforcement in the wing wall. The comparisons would likely change if the bridge were designed purely according to LRFD Specifications rather than as a comparative design. Design procedures under the LRFD Specification tend to be more calculation-intensive. However, the added complexity of the LRFD Specification is counterbalanced by the consistency of the design philosophy and its ability to consider a variety of bridges.  相似文献   

7.
The current American Association of State Highway and Transportation Officials (AASHTO) Load and Resistance Factor Design (LRFD) Specifications impose fairly strict limits on the use of its live-load distribution factor for design of highway bridges. These limits include requirements for a prismatic cross section, a large span-length-to-width ratio, and a small plan curvature. Refined analyses using 3D models are required for bridges outside of these limits. These limits place severe restrictions on the routine design of bridges in California, as box-girder bridges outside of these limits are frequently constructed. This paper presents the results of a study investigating the live-load distribution characteristics of box-girder bridges and the limits imposed by the LRFD specifications. Distribution factors determined from a set of bridges with parameters outside of the LRFD limits are compared with the distribution factors suggested by the LRFD specifications. For the range of parameters investigated, results indicated that the current LRFD distribution factor formulas generally provide a conservative estimate of the design bending moment and shear force.  相似文献   

8.
Currently, the load rating is the method used by State DOTs for evaluating the safety and serviceability of existing bridges in the United States. In general, load rating of a bridge is evaluated when a maintenance, improvement work, change in strength of members, or addition of dead load alters the condition or capacity of the structure. The AASHTO LRFD specifications provide code provisions for prescribing an acceptable and uniform safety level for the design of bridge components. Once a bridge is designed and placed in service, the AASHTO Manual for Condition Evaluation of Bridges provides provisions for determination of the safety and serviceability of existing bridge components. Rating for the bridge system is taken as the minimum of the component ratings. If viewed from a broad perspective, methods used in the state-of-the-practice condition evaluation of bridges at discrete time intervals and in the state-of-the-art probability-based life prediction share common goals and principles. This paper briefly describes a study conducted on the rating and system reliability-based lifetime evaluation of a number of existing bridges within a bridge network, including prestressed concrete, reinforced concrete, steel rolled beam, and steel plate girder bridges. The approach is explained using a representative prestressed concrete girder bridge. Emphasis is placed on the interaction between rating and reliability results in order to relate the developed approach to current practice in bridge rating and evaluation. The results presented provide a sound basis for further improvement of bridge management systems based on system performance requirements.  相似文献   

9.
In a paper previously published by the first writer, a procedure for load-rating masonry arch bridges was introduced. The procedure uses the Load Factor Method of the 1994 American Association of State Highway and Transportation Officials Manual for the Condition Evaluation of Bridges, applied to a frame analysis model of a masonry arch spanning from abutment to abutment. The procedure is based on the assumption of the arch barrel having no tensile strength. The objective of this technical note is to complement the initial procedure by enabling the assessing engineer to exercise discretion in deciding whether or not a small value of tensile strength should be allowable in determining a suitable rating for masonry arch bridges. In addition the initially proposed strength values, which are considered overly conservative, are increased. The introduction of these refinements will allow a more accurate assessment of the nation’s stock of stone masonry bridges.  相似文献   

10.
This paper focuses on levels of live-load lateral bending moment (bimoment) distribution in a horizontally curved steel I-girder bridge. Work centered primarily on the examination of (1) data from field testing of an in-service horizontally curved steel I-girder bridge and (2) results from a three-dimensional numerical model. Experimental data sets were used for calibration of the numerical model and the calibrated model was then used to examine the accuracy of lateral bending distribution factor equations presented in the 1993 Edition of the (AASHTO) Guide Specifications for Horizontally Curved Bridges. It is of interest to examine these equations for potential use in preliminary design even though they have been eliminated during recent AASHTO specification modifications that addressed curved bridge analysis, the 2005 Interims to the AASHTO LRFD Bridge Design Specifications. In addition, they were developed using idealized computer models and small-scale laboratory testing with very few field tests of in-service full-scale curved steel bridges conducted to support or refute their use. Results from such experimental and numerical studies are presented and discussed herein.  相似文献   

11.
This paper contains an alternate method for the calculation of the predicted positive bending moment capacity of composite steel girders. The 2000 interim version of the American Association of State Highway and Transportation Officials (AASHTO) Load and Resistance Factor Design Bridge Design Specifications has extended the applicability of the provisions for the design of composite plate girders in positive bending to include 485 MPa high performance steel. Observations made during numerical studies performed in conjunction with this extension demonstrated a need for a more comprehensive study encompassing a larger and more diverse set of parameters. This paper provides a summary of the analytical and experimental work that was carried out to develop provisions for predicting the ultimate strength and assuring the ductility of composite girders constructed using 250, 345, or 485 MPa steels. The new provisions outlined in this paper are more accurate and require less calculation. The recommended equations only require calculation of the plastic moment capacity, while current AASHTO Specification provisions require the calculation of both plastic and yield moment capacities of the section.  相似文献   

12.
13.
The recently developed Manual for condition evaluation and load and resistance factor rating (LRFR) of highway bridges in 2003 provides an alternative procedure for practicing engineers to evaluate the fatigue life of steel bridge structures. Although the evaluation manual maintains several aspects used in the AASHTO fatigue guide specification in 1990, it also utilizes formulas and values specified in the AASHTO LRFD bridge design specifications in 1998. A comparative study of the fatigue lives provided by the procedures in the Evaluation manual and the Guide specifications was performed using a life prediction of 14 steel bridges with different structural configurations and various fatigue details. It has been shown that longer predicted fatigue lives are typically obtained when using the Evaluation manual. The ratio of the finite evaluation fatigue lives for the two procedures was found to be in a range of 0.99–2.14.  相似文献   

14.
This paper presents simple relationships for calculating live-load distribution factors for glued-laminated timber girder bridges with glued-laminated timber deck panels. Analytical models were developed using the Ansys 113 finite-element program, and the results were validated using recorded data from four in-service timber bridges. The effects of the bridge span length, the spacing between girders, and the bridge width on the distribution of the live load were investigated by using the validated models. The live-load distribution factors obtained from the field test and the analytical models were compared with those obtained using the AASHTO LRFD Bridge Design Specifications2 live-load distribution relations. The comparison showed that the live-load distribution factors obtained by using the AASHTO LRFD Bridge Design Specifications2 were conservative. For this reason, statistical methods were used to develop accurate relationships that can be used to calculate the live-load distribution factors in the design of glued-laminated girder bridges.  相似文献   

15.
The load-carrying capacity of existing slab bridges is commonly calculated based on the equivalent width recommended by the American Association of State Highway and Transportation Officials (AASHTO). Interest in the field load testing of highway bridges has increased significantly in recent years. Load capacity of a bridge based on field testing is generally greater than that determined from standard rating calculations. The main parameters affecting the equivalent width were identified using the grillage analogy method. The results suggest that edge beam size should be considered in the equivalent width calculation. A simplified equation for the equivalent width is proposed for solid slab bridges with or without edge beams. The equivalent widths based on the AASHTO and LRFD cores was compared with those based on the field tests and analyses. The equivalent widths based on the grillage analogy and field tests are higher than those based on the AASHTO and LRFD codes, which indicates that the codes give a conservative estimate of the equivalent width. In the absence of field tests, the grillage analogy provides an accurate estimate for the equivalent width and bridge rating.  相似文献   

16.
The current (2004) fatigue design provisions in the 3rd Ed. of the AASHTO LRFD Bridge Design Specifications identify and classify the rib-to-web (rib-to-diaphragm) connections commonly utilized in steel orthotropic bridge decks where cutouts are used. The fatigue resistance of these details has been established through full-scale laboratory testing. This paper examines how the fatigue stress range was defined and determined during the testing which established the fatigue resistance of the details. A procedure to calculate or measure stresses at the rib-to-diaphragm connection, which is consistent with the fatigue resistance published in the AASHTO LRFD Bridge Design Specifications, is presented.  相似文献   

17.
United States highway bridge design has advanced into the era of risk-based practice, milestoned by the American Association of State Highway and Transportation Officials Load and Resistance Factor Design Bridge Design Specifications. On the other hand, national and state design codes cannot specifically account for localized risk for each bridge site, which may have significantly different loading conditions from the national average. This issue is focused on here, as related to the adequacy of current bridge design loads for sites in the state of Michigan. The structural reliability indices are calculated for a randomly selected sample of new bridges from the Michigan inventory, including four major girder bridge types. Weigh-in-motion truck load data collected in Michigan are used to statistically characterize the truck load effect in the bridges’ primary members for moment and shear at critical cross sections. The reliability indices are found to vary significantly among the bridge sites and types investigated. Many of them indicate inadequate design load for the Detroit area.  相似文献   

18.
Since the first edition of the AASHTO Guide Specifications for Horizontally Curved Steel Girder Highway Bridges was published in 1980, there have been two more editions including many revisions to the specifications. Some changes were based on valid research results and others were based on limited or uncertain research results and information. The current edition of the specifications contains provisions that may result in unreasonably conservative load capacity ratings. In this paper, the results of field tests and analyses conducted on the Veterans’ Memorial curved steel-box girder bridge are discussed. Test and analytical results show: (1) current AASHTO guide specifications regarding the first transverse stiffener spacing at the simple end support of a curved girder may be too conservative for bridge load capacity ratings; (2) current AASHTO guide specifications may greatly overestimate the dynamic loadings of curved box girder bridges with long span lengths; and (3) a plane grid finite-element model of about 20 elements per span in the longitudinal direction can be used to analyze curved multigirder bridges with external bracings located only over supports. The research results are instructive and applicable to bridge design and bridge load-rating activities.  相似文献   

19.
Steel Girder Design per AASHTO LRFD Specifications (Part 2)   总被引:1,自引:0,他引:1  
This is the second of two companion papers discussing and illustrating the AASHTO LRFD Bridge Design Specifications for the design of steel girders subject to flexure and shear. In the first paper, notation was introduced that allows reformulation of the AASHTO design equations in a more convenient format and the design of steel I-girders in flexure was presented. The second paper addresses design of box girders for flexure and design of box and I-girders for shear. The design approach is illustrated by two detailed example problems.  相似文献   

20.
The effect of a skew angle on simple-span reinforced concrete bridges is presented in this paper using the finite-element method. The parameters investigated in this analytical study were the span length, slab width, and skew angle. The finite-element analysis (FEA) results for skewed bridges were compared to the reference straight bridges as well as the American Association for State Highway and Transportation Officials (AASHTO) Standard Specifications and LRFD procedures. A total of 96 case study bridges were analyzed and subjected to AASHTO HS-20 design trucks positioned close to one edge on each bridge to produce maximum bending in the slab. The AASHTO Standard Specifications procedure gave similar results to the FEA maximum longitudinal bending moment for a skew angle less than or equal to 20°. As the skew angle increased, AASHTO Standard Specifications overestimated the maximum moment by 20% for 30°, 50% for 40°, and 100% for 50°. The AASHTO LRFD Design Specifications procedure overestimated the FEA maximum longitudinal bending moment. This overestimate increased with the increase in the skew angle, and decreased when the number of lanes increased; AASHTO LRFD overestimated the longitudinal bending moment by up to 40% for skew angles less than 30° and reaching 50% for 50°. The ratio between the three-dimensional FEA longitudinal moments for skewed and straight bridges was almost one for bridges with skew angle less than 20°. This ratio decreased to 0.75 for bridges with skew angles between 30 and 40°, and further decreased to 0.5 as the skew angle of the bridge increased to 50°. This decrease in the longitudinal moment ratio is offset by an increase of up to 75% in the maximum transverse moment ratio as the skew angle increases from 0 to 50°. The ratio between the FEA maximum live-load deflection for skewed bridges and straight bridges decreases in a pattern consistent with that of the longitudinal moment. This ratio decreased from one for skew angles less than 10° to 0.6 for skew angles between 40 and 50°.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号