首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT: Sodium is an essential nutrient with important functions in regulating extracellular fluid volume and the active transport of molecules across cell membranes. However, recent estimates from NHANES III (Third National Health and Nutrition Examination Survey) data show that over 95% of men and over 75% of women exceed the recommended daily tolerable upper intake of sodium. Since these high levels of dietary sodium are associated with a high prevalence of hypertension, prehypertension and, possibly, other adverse effects on health, many national and international health organizations recommend that sodium intake be significantly decreased. Traditionally, salt (sodium chloride) has been used as a food preservative that kills or limits the growth of foodborne pathogens and spoilage organisms by decreasing water activity. Salt also performs other important functions in foods by adding flavor and masking bitter tastes, controlling growth of yeast and fermentative bacteria, and promoting binding of proteins and other components in foods to achieve desired textures. Many processed foods contain high levels of salt and several countries have developed national programs for significantly reducing the sodium chloride content in many processed foods and encouraging a decrease in discretionary salt use. This review considers published data on the apparent adverse health effects of excess salt intake as well as the important functions of salt in different foods and possible strategies for reducing sodium levels in processed foods while still producing safe foods that consumers find acceptable.  相似文献   

2.
BACKGROUND: A mixture of plant species adds biochemical diversity to pastures that may enhance productivity while decreasing reliance on herbicides and insecticides. All plants contain secondary metabolites (PSMs) that interact in plant communities in a variety of ways. Our objective was to determine if PSM diversity enhanced food intake when sheep were allowed to select from foods that varied in concentrations of tannins, saponins, and alkaloids. We hypothesized that intake of foods containing alkaloids would increase when sheep were offered supplemental foods with tannins and saponins. The alkaloid gramine is proteinaceous in nature, tannins bind to proteins in the gut, which enhances excretion of proteins, so we hypothesized tannins would bind to gramine and enhance its excretion from the body. The alkaloid ergotamine is steroidal, saponins have a high affinity for binding to lipid and steroidal compounds in the gut and then being excreted, so we hypothesized saponins would bind to ergotamine and enhance its excretion from the body. RESULTS: We found that sheep fed either gramine or ergotamine in combination with tannin‐ or saponin‐containing foods had higher intakes of food than sheep offered only foods with gramine or ergotamine. CONCLUSION: These findings are consistent with the hypothesis that animals can neutralize the negative effects of alkaloids by ingesting tannins and saponins. Our results show that PSMs can complement one another to increase a herbivore's intake of unpalatable plant species, with the potential to maintain healthy animals and bio‐diverse landscapes. Copyright © 2008 Society of Chemical Industry  相似文献   

3.
The NEODIET concerted action, funded under the EU FAIR programme, has focussed for the past two years on evaluating the strategies for the improvement of the nutritional quality of plant foods. These strategies involve the enhancement of key metabolites through the application of conventional plant breeding and genetic engineering, as well as the application of newer approaches to food processing.This paper focuses on the benefits of improving the nutritional quality of plants by the enhancement of the beneficial phytochemicals directly in the plant rather than by the addition of essential nutrients to processed foods as has been conventionally undertaken. Examples of the disadvantages of fortifying plant foods are given.The role of food technology in improving the bioavailability of some nutritional constituents, and thereby improving the overall quality of the food, is illustrated with reference to the carotenoids. The importance of structure of the plant metabolite in determining nutritional quality is also illustrated with reference to the effects of structure on the bioavailability and biological effectiveness of plant flavonoids.  相似文献   

4.
In recent years, both food quality and its effect on human health have become a fundamental issue all over the world. As a consequence of this new and increased awareness, American, European, and Asian policymakers have strongly encouraged the research programs on food quality and safety thematic. Attempts to improve human health and to satisfy people's desire for healthcare without intake of pharmaceuticals, has led the food industry to focus attention on functional or nutraceutical food. For a long time, compounds with nutraceutical activity have been produced chemically, but the new demands for a sustainable life have gradually led the food industry to move towards natural compounds, mainly those derived from plants. Many phytochemicals are known to promote good health, but, sometimes, undesirable effects are also reported. Furthermore, several products present on the market show few benefits and sometimes even the reverse - unhealthy effects; the evidence of efficacy is often unconvincing and epidemiological studies are necessary to prove the truth of their claims. Therefore, there is a need for reliable analytical control systems to measure the bioactivity, content, and quality of these additives in the complex food matrix. This review describes the most widespread nutraceutics and an analytical control of the same using recently developed biosensors which are promising candidates for routine control of functional foods.  相似文献   

5.
The kingdom Fungi is the most important group of microorganism contaminating food commodities, and chemical additives are commonly used in the food industry to prevent fungal spoilage. However, the increasing consumer concern about synthetic additives has led to their substitution by natural compounds in foods. The current review provides an overview of using natural agents isolated from different sources (plants, animals, and microorganisms) as promising antifungal compounds, including information about their mechanism of action and their use in foods to preserve and prolong shelf life. Compounds derived from plants, chitosan, lactoferrin, and biocontrol agents (lactic acid bacteria, antagonistic yeast, and their metabolites) are able to control the decay caused by fungi in a wide variety of foods. Several strategies are employed to reduce the drawbacks of some antifungal agents, like their incorporation into oil-in-water emulsions and nanoemulsions, edible films and active packaging, and their combination with other natural preservatives. These strategies facilitate the addition of volatile agents into food products and, improve their antifungal effectiveness. Moreover, biological agents have been investigated as one of the most promising options in the control of postharvest decay. Numerous mechanisms of action have been elucidated and different approaches have been studied to enhance their antifungal effectiveness.  相似文献   

6.
Biogenic amines (BAs) are biologically active molecules which have aliphatic (putrescine, cadaverine, spermine, spermidine), aromatic (tyramine, phenylethylamine) or heterocyclic (histamine, tryptamine) structures. They can be detected in raw and processed foods which are formed and degraded through several pathways during the metabolic processes of animals, plants and microorganisms. The identification and quantitation procedures of BAs in food samples are very important, because BAs are considered as the indicators of food quality and freshness. The determination of BAs are commonly achieved by separation techniques such as high-performance liquid chromatography (HPLC), gas chromatography (GC) and capillary electrophoresis (CE). In this article, analysis of BAs in foods were reviewed from 2007 to present.  相似文献   

7.
BackgroundAlthough the consumption of processed foods is growing in overseas markets, the increased awareness of consumers to health and wellbeing in recent years has led to a decline in the growth of processed food sales in the Western market. The added pressure on the food manufacturing industry to increase the perceived healthiness of processed foods has opened up new market potential in the area of fortified processed foods, such as processed cheeses.Scope and approachThis review paper provides an overview of the current methodologies into the production of a processed cheese with added health benefits, including the use of probiotics and prebiotics, vitamin and mineral fortification and the addition of plant macromolecules.Key findings and conclusionsProcessed cheeses with increased health benefits have been of great interest to manufacturers, with reduced salt and reduced fat options commercially available. Although processed cheeses fortified with vitamins, mineral, probiotics and prebiotics are not as widespread, further work in these areas has been identified as a way to produce high value processed cheese products with added health benefits.  相似文献   

8.
Salt plays a major role in the human diet and food as tastant, flavour enhancer, nutrient, preservative and structuring aid. While intake of salt is part of a healthy diet, the vast majority of people in the developed world consume salt at a level high enough to place them at risk of developing diet induced illnesses. Salt intake is predominantly from processed foods. In this study it has been investigated whether careful choice of the viscosity behaviour of food thickeners, as used in processed foods, is exploitable to enhance saltiness perception and therefore allows reducing the content of salt in processed foods without compromising flavour.  相似文献   

9.
Light‐emitting diodes (LEDs) possess unique properties that are highly suitable for several operations in the food industry. Such properties include low radiant heat emissions; high emissions of monochromatic light; electrical, luminous, and photon efficiency; long life expectancy, flexibility, and mechanical robustness. Therefore, they reduce thermal damage and degradation in crops and foods and are suitable in cold‐storage applications. Control over spectral composition of emitted light results in increased yields and nutritive content of horticultural or agricultural produce. Recently, LEDs have been shown to preserve or enhance the nutritive quality of foods in the postharvest stage, as well as manipulate the ripening of fruits, and reduce fungal infections. LEDs can be used together with photosensitizers or photocatalysts to inactivate pathogenic bacteria in food. UV LEDs, which are rapidly being developed, can also effectively inactivate pathogens and preserve food in postharvest stages. Therefore, LEDs provide a nonthermal means of keeping food safe without using chemical sanitizers or additives, and do not accelerate bacterial resistance. This article provides a review of the technology of LEDs and their role in food production, postharvest preservation, and in microbiological safety. Several challenges and limitations are identified for further investigation, including the difficulty in optimizing LED lighting regimens for plant growth and postharvest storage, as well as the sensory quality and acceptability of foods stored or processed under LED lighting. Nevertheless, LED technology presents a worthy alternative to current norms in lighting for the growth and storage of safe and nutritious food.  相似文献   

10.
The microbial safety of foods continues to be a major concern to consumers, regulatory agencies and food industries throughout the world. Many food preservation strategies have been used traditionally for the control of microbial spoilage in foods but the contamination of food and spoilage by microorganisms is a problem yet to be controlled adequately. Although synthetic antimicrobials are approved in many countries, the recent trend has been for use of natural preservatives, which necessitates the exploration of alternative sources of safe, effective and acceptable natural preservatives. Plants contain innumerable constituents and are valuable sources of new and biologically active molecules possessing antimicrobial properties. Plants extracts either as standardized extracts or as a source of pure compounds provide unlimited opportunities for control of microbial growth owing to their chemical diversity. Many plant extracts possess antimicrobial activity against a range of bacteria, yeast and molds, but the variations in quality and quantity of their bioactive constituents is the major detriments in their food use. Further, phytochemicals added to foods may be lost by various processing techniques. Several plant extracts or purified compounds intended for food use have been consumed by humans for thousands of years, but typical toxicological information is not available for them. Although international guidelines exist for the safety evaluation of food additives, owing to problems in standardization of plant extracts, typical toxicological values have not been assigned to them. Development of cost effective isolation procedures that yield standardized extracts as well as safety and toxicology evaluation of these antimicrobials requires a deeper investigation.  相似文献   

11.
钱雪丽  陶宁萍  王锡昌 《食品工业科技》2018,39(16):313-317,324
随着纳米技术的发展,已有多种方法用于食品中纳米颗粒的制备。食品中的各种活性成分经纳米技术加工成纳米食品后,其理化性质、口味、营养价值等发生优向改变,起到增强食品功能性,提高有效成分生物利用率,促进人体消化吸收的作用。制备得到纳米食品可有效降低食品加工过程中多种活性成分的浪费,丰富食品种类,拓展新型食品市场。而人们对营养健康的功能性食品的不断追求,也使纳米食品作为一种潜在的功能性食品具有广阔的发展前景。因此,本文综述了近年来食品中纳米颗粒的制备方法、表征和应用方面的研究进展,为今后食品中纳米颗粒的制备和应用提供一定的参考。  相似文献   

12.
Alkaloid-containing plants are an intrinsic part of the regular Western diet. The present paper summarizes the occurrence of alkaloids in the food chain, their mode of action and possible adverse effects including a safety assessment. Pyrrolizidine alkaloids are a reason for concern because of their bioactivation to reactive alkylating intermediates. Several quinolizidine alkaloids, β-carboline alkaloids, ergot alkaloids and steroid alkaloids are active without bioactivation and mostly act as neurotoxins. Regulatory agencies are aware of the risks and have taken or are considering appropriate regulatory actions for most alkaloids. These vary from setting limits for the presence of a compound in feed, foods and beverages, trying to define safe upper limits, advising on a strategy aiming at restrictions in use, informing the public to be cautious or taking specific plant varieties from the market. For some alkaloids known to be present in the modern food chain, e.g., piperine, nicotine, theobromine, theophylline and tropane alkaloids risks coming from the human food chain are considered to be low if not negligible. Remarkably, for many alkaloids that are known constituents of the modern food chain and of possible concern, tolerable daily intake values have so far not been defined.  相似文献   

13.
The fate of minerals can be conveniently studied through intrinsic labeling techniques. The mineral of interest is biologically incorporated into the food in a form that can be distinguished analytically from the natural form of the element. Radiolabels have traditionally been used to study such problems as the uptake of minerals by plants, the gross and subcellular mineral distribution in plant tissues, the form and associations of the deposited mineral, and the bioavailability of minerals to animals and humans. The use of stable (nonradioactive) isotopes as a label offers the potential of safely studying bioavailability of minerals from individual foods in human population groups of all ages using foods processed in normal food handling and processing facilities.  相似文献   

14.
Foodborne protozoan parasites   总被引:10,自引:0,他引:10  
This report addresses Cryptosporidium, Giardia, Cyclospora, and more briefly, Toxoplasma as the main parasitic protozoa of concern to food production worldwide. Other parasitic protozoa may be spread in food or water but are not considered as great a risk to food manufacture. The protozoan parasites Cryptosporidium, Giardia, and Cyclospora have proven potential to cause waterborne and foodborne disease. Toxoplasma gondii has been considered a risk in specific cases, but humans are not its primary host. Cryptosporidium and Giardia are widespread in the environment, particularly the aquatic environment, and major outbreaks of cryptosporidiosis and giardiasis have occurred as a result of contaminated drinking water. Large outbreaks of waterborne cyclosporiasis have not been identified. Cryptosporidium, Giardia, and Cyclospora have potential significance in the preparation and consumption of fresh produce and in catering practice, in which ready-to-eat foods may be served that have not received heat treatment. None of the three organisms Cryptosporidium, Giardia, and Cyclospora has been shown to be a problem for heat processed food or tap water that has undergone appropriate treatment at a water treatment works. All three are sensitive to standard pasteurisation techniques. Although humans are not a primary host for T. gondii, the potential exists for both waterborne and foodborne toxoplasmosis. Parasitic protozoa do not multiply in foods, but they may survive in or on moist foods for months in cool, damp environments. Their ecology makes control of these parasites difficult. For general control of parasitic protozoa in the food chain, the following steps are necessary: - Follow good hygienic practice in food service and catering industries.- Minimise dissemination of cysts and oocysts in the farming environment and via human waste management.- Include these microorganisms in Hazard Analysis Critical Control Point (HACCP) plans of water suppliers, industries or sectors that use fresh produce, and operations in which contaminated process or ingredient water could end up in the product (e.g., where water supplies may become contaminated).  相似文献   

15.
Saponins occur widely in plant species and exhibit a range of biological properties, both beneficial and deleterious. This review, which covers the literature to mid 1986, is concerned with their occurrence in plants and their effects when consumed by animals and man. After a short discussion on the nature, occurrence, and biosynthesis of saponins, during which the distinction between steroidal and triterpenoid saponins is made, the structures of saponins which have been identified in a variety of plants used as human foods, animal feedingstuffs, herbs, and flavorings are described. Many of these compounds have been characterized only during the last 2 decades, and modern techniques of isolation, purification, and structural elucidation are discussed. Particular consideration is given to mild chemical and enzymatic methods of hydrolysis and to recent developments in the application of NMR and soft ionization MS techniques to structural elucidation. Methods currently used for the quantitative analysis of saponins, sapogenols, and glycoalkaloids are critically considered; advances in the use of newer methods being emphasized. The levels of saponins in a variety of foods and food plants are discussed in the context of the methods used and factors affecting these levels, including genetic origin, agronomic, and processing variables, are indicated. Critical consideration is given to the biological effects of saponins in food which are very varied and dependent upon both the amount and chemical structure of the individual compounds. The properties considered include membranolytic effects, toxic and fungitoxic effects, adverse effects on animal growth and performance, and the important hypocholesterolemic effect. A final section deals briefly with the pharmacological effects of saponins from ginseng, since use of this plant is increasing in certain sections of western society as well as being traditional in the Orient.  相似文献   

16.
ABSTRACT

One of the food security problems faced worldwide is the occurrence of mycotoxins in grains and their foods. Fumonisins (FBs) are mycotoxins which are prevalent in corn (Zea mays L.) and its based foods. Their intake and exposure have been epidemiologically and inconclusively associated with oesophageal cancer and neural tube defects in humans, and other harmful health effects in animals. The toxic effects of FBs can be acute or chronic and these metabolites bioaccumulate mainly in liver and kidney tissues. Among FBs, fumonisin B1 (FB1) is the most relevant moiety although the ‘hidden’ forms produced after food thermal processes are becoming relevant. Corn is the grain most susceptible to Fusarium and FBs contamination and the mould growth is affected both by abiotic and biotic factors during grain maturation and storage. Mould counts are mainly affected by the grain water activity, the environmental temperature during grain maturation and insect damage. The abiotic factors affected by climatic change patterns have increased their incidence in other regions of the world. Among FBs, the hidden forms are the most difficult to detect and quantify. Single or combined physical, chemical and biological methods are emerging to significantly reduce FBs in processed foods and therefore diminish their toxicological effects.  相似文献   

17.
Essential oils derived from plants have been recognized for decades to exhibit biological activities, including antioxidant, anticancer, and antimicrobial attributes. Antimicrobial activities of these natural plant materials have been intensively explored in recent years, mainly in response to the overwhelming concern of consumers over the safety of synthetic food additives. Gram-negative organisms are believed to be slightly less sensitive to essential oils than Gram-positive bacteria. Generally, a higher concentration is required to obtain the same efficacy in foods than in synthetic media. The combinations of different types of essential oils or with other food additives have been found to potentially exhibit synergistic if not additive effects. This suggests a cost-efficient and wholesome alternative to both food industry and consumers, at the same time adhering to the hurdle technology in inhibiting proliferation of foodborne pathogens. This review aims to examine the conventional methods commonly used for assessment of antimicrobial activities of essential oils and phytochemicals, the use of these substances as antimicrobials in food products, factors that affect their efficacy, synergism between components or with available food preservatives as well as the challenges and future directions of using essential oils and phytochemicals as natural food preservatives.  相似文献   

18.
Aluminium content of foods and diets   总被引:3,自引:0,他引:3  
Literature data on the aluminium content of individual foods have been compiled, summarized and presented by food groups. The contribution of aluminium from food preparation and cooking utensils and from food additives is discussed. Literature data on the daily intake of aluminium are summarized, and the contribution of food groups to daily aluminium intake is estimated. The major sources of dietary aluminium include several with aluminium additives (grain products, processed cheese and salt) and several that are naturally high in aluminium (tea, herbs and spices). The aluminium that may migrate from aluminium utensils is probably not a major or consistent source of this element. Daily intakes of aluminium, as reported prior to 1980, were 18-36 mg per day. More recent data, which are probably more accurate, indicate intakes of 9 mg per day for teenage and adult females and 12-14 mg per day for teenage and adult males.  相似文献   

19.
丙烯酰胺是一种在高温下加工的食品中美拉德反应的副产物,常见于油炸和焙烤类食品中,已被认为是潜在的致癌物。越来越多的研究表明,可以通过添加从植物中提取的天然活性成分来抑制食品加工过程中丙烯酰胺的形成,由于天然植物天然环保、取材易、成本低,因此是一种符合工业需求的添加剂。本文着重对香辛料提取物、水果提取物、叶茎类提取物和谷豆类提取物抑制丙烯酰胺的效果研究进行了综述,结合抑制效果和对产品的感官影响,得出较为可行的抑制剂为茴香提取物、竹叶提取物、葡萄副产品和黑花生衣提取物。针对目前的研究现状对未来的潜在方向提出了展望,以期为食品工业中抑制丙烯酰胺提供更多的方法。  相似文献   

20.
It has been mandatory to label five allergenic substances (AS; egg, milk, wheat, buckwheat and peanut) in all processed foods, since April 2002 in Japan. Two kinds of ELISA kits have been provided as screening test kits for the Japanese official method. The kits have many advantages but some disadvantages, i.e., the kits are not necessarily suitable for daily monitoring in food manufacturing plants, because they require various analytical equipments and the use of complicated procedures. To overcome these drawbacks, we have developed other diagnostic kits based on immunochromatography that should enable more rapid and simple screening for food allergens. Then we examined the performance of these immunochromatographic test kits (IC kits) in terms of sensitivity, repeatability and cross-reactivity to AS proteins in 11 kinds of food models with various heating conditions and physical properties. We also examined processed food models including AS protein of constant concentration, using the IC kits and ELISA kits, and compared the results. The IC kits detected AS proteins at 5 microg/g in the extracts from processed food models, and provided highly reproducible results. Cross-reactivity among the AS proteins was not observed. The results obtained using the IC kits showed performance equivalent to that of the ELISA kits we examined in unheating processed food models including AS proteins of constant concentration. The IC kits should be more suitable for daily monitoring in food manufacturing plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号