首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of heating schedule on microstructure and fracture resistance has been investigated in single-phase Nd-, Y-, and Yb-α-SiAlON. Such effect is strongly system dependent, reflecting the strong influence of phase stability on α-SiAON nucleation and the amount of transient/residual liquid during processing. The addition of 1% of α-SiAlON seeds to the starting powders nearly completely obliterates such effect, while it simultaneously improves microstructure homogeneity and fracture resistance. SENB toughness of 7 MPa·m1/2 and peak R -curve toughness of ∼11 MPa·m1/2 have been obtained for seeded Y-α-SiAlON ceramics using heating rates from 1°C/min to 25°C/min.  相似文献   

2.
The Mode I fracture toughness ( K I C ) of a small-grained Si3N4 was determined as a function of hot-pressing orientation, temperature, testing atmosphere, and crack length using the single-edge precracked beam method. The diameter of the Si3N4 grains was <0.4 µm, with aspect ratios of 2–8. K I C at 25°C was 6.6 ± 0.2 and 5.9 ± 0.1 MPa·m1/2 for the T–S and T–L orientations, respectively. This difference was attributed to the amount of elongated grains in the plane of crack growth. For both orientations, a continual decrease in K IC was observed through 1200°C, to ∼4.1 MPa·m1/2, before increasing rapidly to 7.5–8 MPa·m1/2 at 1300°C. The decrease in K IC through 1200°C was a result of grain-boundary glassy phase softening. At 1300°C, reorientation of elongated grains in the direction of the applied load was suggested to explain the large increase in K IC. Crack healing was observed in specimens annealed in air. No R -curve behavior was observed for crack lengths as short as 300 µm at either 25° or 1000°C.  相似文献   

3.
This work describes the measurement of R -curve behavior in ferroelectric ceramics using four-point bend specimens with controlled semielliptical surface cracks. The results are compared for two compositions of lead lanthanum zirconate titanate. One exhibits ferroelastic behavior, the other electrostrictive linear elastic behavior. R -curves are measured in the crack length regime of 0.1 to 0.8 mm. The ferroelastic composition displays a toughness increase from 0.5 to 1.2 MPa·m1/2. The linear elastic composition displays a flat R -curve. The R -curve behavior is attributed to ferroelastic toughening.  相似文献   

4.
R -curve behavior of Si3N4–BN composites and monolithic Si3N4 for comparison was investigated. Si3N4–BN composites showed a slowly rising R -curve behavior in contrast with a steep R -curve of monolithic Si3N4. BN platelets in the composites seem to decrease the crack bridging effects of rod-shaped Si3N4 grains for small cracks, but enhanced the toughness for long cracks as they increased the crack bridging scale. Therefore, fracture toughness of the composites was relatively low for the small cracks, but it increased significantly to ∼8 MPa·m1/2 when the crack grew longer than 700 μm, becoming even higher than that of the monolithic Si3N4.  相似文献   

5.
Crack-Growth-Velocity-Dependent R-Curve Behavior in Lead Zirconate Titanate   总被引:1,自引:0,他引:1  
Crack-velocity ( v – K ) curves and crack-resistance ( R ) curves for unpoled ferroelectric and ferroelastic lead zirconate titanate (PZT) were determined for long cracks in compact-tension (CT) geometry using an in situ fracture device on the stage of an optical microscope. The steady-state crack length and the plateau value of R -curves measured at controlled constant velocities increased with increased velocity. The plateau value for 10−6 m/s was 1.2 MPa·m1/2 after 1.3 mm of crack extension and for 10−4 m/s was 1.4 MPa·m1/2 after 2.2 mm.  相似文献   

6.
Effect of Poling Direction on R-Curve Behavior in Lead Zirconate Titanate   总被引:1,自引:0,他引:1  
R -curves of lead zirconate titanate (PZT) have been measured with compact tension (CT) specimens for different poling conditions and grain sizes. Depending on poling direction the plateau value of the R -curves ranged from 1.13 to 1.54 MPa·m1/2 for a grain size of 6.4 μm and from 1.14 to 1.30 MPa·m1/2 for a grain size of 5.2 μm. Poling in the thickness direction yielded the material with the highest fracture toughness while the direction parallel to the loading direction led to the lowest fracture toughness.  相似文献   

7.
Boron carbide/titanium diboride composites with 20 and 40 vol% particulate TiB2 and various amounts of free carbon were investigated with respect to microcrack toughening. In agreement with previous work, the mere addition of TiB2 was found to raise the toughness from 2.2 MPa·m1/2 up to 3.0 and 3.5 MPa·m1/2, respectively. A further and very significant increase of composite toughness up to 6.0 MPa·m1/2 was discovered upon the incorporation of free carbon. SEM and TEM observations reveal that this toughening is associated with microcracking at B4C-TiB2 phase boundaries. Microcracking is triggered by thin carbon interlayers, which are located at hetero interfaces and supply a weak fracture path.  相似文献   

8.
A strain-gauge procedure that enables determination of the crack-tip toughness ( K I0) from bending-strength tests is described. The procedure is applied to coarse-grained alumina and yields an average K I0 value of 2.51 MPa·m1/2, with a standard deviation of 0.16 MPa·m1/2.  相似文献   

9.
The strength, S , of ceramic and glass fibers often can be estimated from fractographic investigation using the fracture mirror radius, r m, and the relationship S = A m/( r m)1/2, where A mis the "mirror constant." The present work estimates the value of A mfor Tyranno® Si-Ti-C-O fibers in situ in a three-dimensional woven SiC/SiC-based composite to be 2.50 ± 0.09 MPa·m1/2. This value is within the range of 2–2.51 MPa·m1/2 previously obtained for nominally similar Nicalon® Si-C-O fibers.  相似文献   

10.
Vickers and Knoop indentation tests have been used to study the fracture and deformation characteristics of 9.4-mol%-Y2O3-stabilized ZrO2 single crystals. Kc is anisotropic, with values of 1.9 and 1.1 MPa·m1/2 for radial cracks propagating along (100) and (110), respectively. The toughness for these two orientations was also determined using the single-edge notched-beam geometry, and yielded values of 1.9 and 1.5 MPa·m1/2.  相似文献   

11.
12.
C addition (2 wt%) to MoSi2 acted as a deoxidant, removing the otherwise ubiquitous siliceous grain boundary phase in hot-pressed samples, and causing formation of SiC and Mo5Si3C1 (a variable-composition Nowotny phase). Both hardness and fracture toughness of the C-containing alloy were higher than those of the C-free (and oxygen-rich) material; more significantly, the fracture toughness of the MoSi2+ 2% C alloy increased from 5.5 MPa·m1/2 at 800°C to ∼11.5 MPa·m1/2 at 1400°C.  相似文献   

13.
Crack velocity curves for Y-TZP and Al2O3-toughened Y-TZP were determined for long cracks in compact tension specimens with an in situ fracture device on the stage of an optical microscope. Indications for a crack velocity threshold were found for both materials. Above this threshold, at 2.6 MPa·m1/2 for Y-TZP and 3.6 MPa·m1/2 for Al2O3-toughened Y-TZP, chemically assisted subcritical crack growth occurs over an extended regime of applied stress intensity factors of width 2.1–2.8 MPa·m1/2. It is recognized that the dependence of the shielding term on the crack-tip stress field renders transformation-toughened materials particularly susceptible to stress-corrosion cracking. This interrelation leads to the definition of a steady-state velocity at constant applied stress intensity factor. This velocity is obtained in the situation where the shielding term is fully defined by the present crack-tip stress field, not depending on prior loading history.  相似文献   

14.
15.
The role of moisture in affecting both intrinsic and extrinsic aspects of the fracture and fatigue-crack growth resistance of a polycrystalline alumina (99.5% pure, 25 μm grain size) has been examined in both moist and dry environments at ambient temperature. The intrinsic (crack-tip) toughness, deduced from measured crack-opening profiles, is found to be less than for a single crystal and is 30% lower (∼0.6 MPa·m1/2) in moist air versus in dry N2, implying that the grain-boundary theoretical strength is higher in a dry environment. Despite this, in dry atmospheres, the R -curves (which derive from crack deflection and grain bridging) initially rose more steeply and nominal fatigue-crack growth thresholds for short crack sizes (20–60 μm) were more than 1.3 MPa·m1/2 higher. Owing to this quicker crack bridging development, strengths for natural flaws could be more than doubled in dry atmospheres, a difference that well exceeds the effect solely due to the intrinsic toughness change. After ∼2 mm of crack growth, however, the R -curve and steady-state fatigue behavior appeared similar in both environments, although altering the atmosphere for such fatigue cracks in situ induced large, abrupt changes in transient growth rates. The environment influences the nature of the bridging zones, with uncracked-ligament bridges playing a larger role in dry atmospheres, while frictional bridges are predominant in moist air. Evidently, to achieve optimal toughness in bridging ceramics, the window for the requisite grain-boundary strength may be small; whereas weak boundaries are required to induce the necessary intergranular fracture, if too weak, shallower R -curves, less strengthening, and poorer fatigue resistance all follow.  相似文献   

16.
The 1.5- to 3-mol%-Y2O3-stabilized tetragonal ZrO2 (Y-TZP) and Al2O3/Y-TZP nanocomposite ceramics with 1 to 5 wt% of alumina were produced by a colloidal technique and low-temperature sintering. The influence of the ceramic processing conditions, resulting density, microstructure, and the alumina content on the hardness and toughness were determined. The densification of the zirconia (Y-TZP) ceramic at low temperatures was possible only when a highly uniform packing of the nanoaggregates was achieved in the green compacts. The bulk nanostructured 3-mol%-yttria-stabilized zirconia ceramic with an average grain size of 112 nm was shown to reach a hardness of 12.2 GPa and a fracture toughness of 9.3 MPa·m1/2. The addition of alumina allowed the sintering process to be intensified. A nanograined bulk alumina/zirconia composite ceramic with an average grain size of 94 nm was obtained, and the hardness increased to 16.2 GPa. Nanograined tetragonal zirconia ceramics with a reduced yttria-stabilizer content were shown to reach fracture toughnesses between 12.6–14.8 MPa·m1/2 (2Y-TZP) and 11.9–13.9 MPa·m1/2 (1.5Y-TZP).  相似文献   

17.
The influence of a strong/weak interface ratio on the mechanical properties of Si3N4/BN-based layered composites was studied. The ratio was controlled by the number of BN spots between the adjacent Si3N4 layers. By increasing the BN interface area from 0% to 72%, fracture toughness increased from 7.7 to 10.9 MPa·m1/2, and bending strength decreased from 1275 to 982 MPa. Fracture toughness was improved from 8.6 to 10.1 MPa·m1/2 by additional heat treatment of samples containing 2 vol%β-Si3N4 seed particles. The bending strength of samples with 35% weak BN interfaces, measured perpendicular and parallel to layer alignment, was 1260 and 1240 MPa, respectively. This confirmed the two-directional isotropy of layered samples.  相似文献   

18.
The mechanical properties of a textured alumina made by high-temperature deformation of normal-purity sintered alumina have been investigated. The textured alumina shows very high bending strength and extremely high fracture toughness. Fracture toughness of more than 10 MPa·m1/2 was measured by the single-edge precracked beam method, and even using the single-edge V-notched beam method, toughness of over 8 MPa·m1/2 was obtained. This high fracture toughness was attributed to a large number of aligned small platelike grains of the textured structure enhancing the grain bridging effect.  相似文献   

19.
Subcritical crack growth in terms of velocity–stress intensity factor ( v – K ) curves in lead zirconate titanate (PZT) were experimentally characterized on poled and unpoled compact tension specimens. The poled specimens were tested under open- and short-circuit electrical boundary conditions, which resulted in an increase in fracture toughness by 0.2 MPa·m1/2 for the accessible velocity range ( v = 10−9 to 10−4 m/s) in the open-circuit case. Subcritical crack growth of unpoled specimens was obtained under ambient (relative humidity = 35%) and dry (relative humidity ∼ 0.02%) conditions over a regime in stress intensity factor of 0.5 MPa·m1/2.  相似文献   

20.
Three-dimensional (3D) carbon fiber reinforced SiC and Si3N4 composites have been fabricated using repeated infiltration of an organosilicon slurry under vacuum and pressure. Open porosity of the infiltrated body was reduced from 40% after the first infiltration to approximately 8% after the seventh cycle. Further reduction of open porosity to less than 3% was accomplished by hot-press densification. The maximum values of flexural strength and fracture toughness were, respectively, 260 MPa and 7.3 MPa·m1/2for C/Si3N4 composites, and 185 MPa and 6 MPa·m1/2 for C/SiC composite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号