首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Anodic aluminum oxide (AAO) films were prepared by alternative current (ac) oxidation in sulfuric acid and phosphoric acid solution. The porous structure of the AAO templates was probed by ac electrodeposition of copper. AAO templates grown using an applied square waveform signal in cold sulfuric acid solution exhibit a greater pore density and a more homogeneous barrier layer. UV–vis–NIR reflectance spectra of the Cu/AAO assemblies exhibit a plasmon absorption peak centered at 580 nm, consistent with the formation of Cu nanostructures slightly larger than 10 nm in diameter. Spectroscopic data also indicate that there is little or no oxide layer surrounding the Cu nanostructures grown by ac electrodeposition. The effect of pH of the cobalt plating solution on the magnetic properties of the Co/AAO assemblies was also investigated. Co nanowire arrays electrodeposited at pH 5.5 in H2SO4-grown AAO templates exhibit a fair coercivity of 1325 Oe, a magnetization squarness of about 72%, and a significant effective anisotropy. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

2.
In this work, the fabrication conditions of anodic aluminum oxide (AAO) templates with different pore size diameters were achieved using oxalic, tartaric, and phosphoric acidic electrolytes. Silver (Ag) nanostructures (NSs) were embedded in AAO template by simple hydrothermal and photoreduction methods. Moreover, titanium dioxide (TiO2) NSs (nanowires) was deposited into these porous templates by sol-gel method. FESEM results suggested that Ag nanofishstars, nanonecklaces (NNs), and TiO2 nanowires (NWs) like structures were grown in AAO pores with high-order and -aspect ratios. An anti-adhesive method was used to estimate the nano-size effect of the structures for enhancing antibacterial mechanism against Pseudomonas aeruginosa Gram-negative bacterium, and Staphylococcus aureus Gram-positive bacterium. In this study, the inhibition percentages of the Ag NNs/AAO membrane were 86.4, and 77.4%, respectively whereas that of the Ag film on glass substrate were 65, and 53.9%. Moreover, the inhibition percentages of the TiO2 NWs/AAO membrane were 85.9, and 70.1%, on the other hand, the TiO2 film on glass substrate were 60.3, and 45.2%. Results proved that the high porosity of the AAO template improved the contact-killing and release-killing actions of nanoparticles against biofilms.  相似文献   

3.
A study of reflective interference spectroscopy [RIfS] properties of nanoporous anodic aluminium oxide [AAO] with the aim to develop a reliable substrate for label-free optical biosensing is presented. The influence of structural parameters of AAO including pore diameters, inter-pore distance, pore length, and surface modification by deposition of Au, Ag, Cr, Pt, Ni, and TiO2 on the RIfS signal (Fabry-Perot fringe) was explored. AAO with controlled pore dimensions was prepared by electrochemical anodization of aluminium using 0.3 M oxalic acid at different voltages (30 to 70 V) and anodization times (10 to 60 min). Results show the strong influence of pore structures and surface modifications on the interference signal and indicate the importance of optimisation of AAO pore structures for RIfS sensing. The pore length/pore diameter aspect ratio of AAO was identified as a suitable parameter to tune interferometric properties of AAO. Finally, the application of AAO with optimised pore structures for sensing of a surface binding reaction of alkanethiols (mercaptoundecanoic acid) on gold surface is demonstrated.  相似文献   

4.
Carbon nanofibers (CNFs) were grown in the porous anodic aluminum oxide (AAO) thin film grown on the Si wafer by electron cyclotron resonance chemical vapor deposition using cobalt as the catalyst. A larger Co particle electrodeposited in the AAO pore channel produced vertically aligned CNFs with a tube diameter in compliance with the pore size of the AAO template. On the other hand, a smaller Co particle resulted in CNF growth with a nonuniform distribution of the tube diameter and a sparse tube density. Amorphous carbon residue produced under the plasma-assisted CNF growth condition seemed to play an essential role leading to the observation. A growth mechanism is proposed to delineate the volume effect of the electrodeposited Co catalyst on the CNF growth confined in pore channels of the AAO template.  相似文献   

5.
Large area silicon nitride (SiN(x)) nanoporous surfaces are fabricated using poly(ether-ether-ketone) (PEEK) nanorod arrays as a template. The procedure involves manipulation of nanoporous anodic aluminum oxide (AAO) templates in order to form an ordered array of PEEK nanopillars with high temperature resistant characteristics. In this context, self-ordered AAO templates are infiltrated with PEEK melts via the "precursor film" method. Once the melts have been crystallized in the porous structure of AAO, the basis alumina layer is removed, yielding an ordered array of PEEK nanopillars. The resulting structure is a high temperature and chemical resistant polymeric nanomold, which can be utilized in the synthesis of nanoporous materials under aggressive conditions. Such conditions are high temperatures (up to 320 °C), vacuum, or extreme pH. For example, SiN(x) nanopore arrays have been grown by plasma enhanced chemical vapor deposition at 300 °C, which can be of interest as mold for nanoimprint lithography, due to its hardness and low surface energy. The SiN(x) nanopore array portrays the same characteristics as the original AAO template: 120 nm diameter pores and an interpore distance of 430 nm. Furthermore, the aspect ratio of the SiN(x) nanopores can be tuned by selecting an AAO template with appropriate conditions. The use of PEEK as a nanotemplate extends the applicability of polymeric nanopatterns into a temperature regime up to now not accessible and opens up the simple fabrication of novel nanoporous inorganic surfaces.  相似文献   

6.
ABSTRACT: This work presents the use of nanoporous anodic aluminium oxide [AAO] for reflective interferometric sensing of volatile sulphur compounds and hydrogen sulphide [H2S] gas. Detection is based on changes of the interference signal from AAO porous layer as a result of specific adsorption of gas molecules with sulphur functional groups on a gold-coated surface. A nanoporous AAO sensing platform with optimised pore diameters (30 nm) and length (4 μm) was fabricated using a two-step anodization process in 0.3 M oxalic, followed by coating with a thin gold film (8 nm). The AAO is assembled in a specially designed microfluidic chip supported with a miniature fibre optic system that is able to measure changes of reflective interference signal (Fabry-Perrot fringes). When the sensor is exposed to a small concentration of H2S gas, the interference signal showed a concentration-dependent wavelength shifting of the Fabry-Perot interference fringe spectrum, as a result of the adsorption of H2S molecules on the Au surface and changes in the refractive index of the AAO. A practical biomedical application of reflectometric interference spectroscopy [RIfS] Au-AAO sensor for malodour measurement was successfully shown. The RIfS method based on a nanoporous AAO platform is simple, easy to miniaturise, inexpensive and has great potential for development of gas sensing devices for a range of medical and environmental applications.  相似文献   

7.
Controlled syntheses of highly monodispersed nanoporous carbon spheres via a nanocasting route are described. Previously reported monodispersed super-microporous or mesoporous silica spheres with hexagonally ordered pore channels were used as sacrificial templates, and the effect of pore sizes of the templates on the porous properties of the nanocast carbon spheres was comprehensively studied. The resultant carbon spheres exhibited a unique starburst structure derived from radially-aligned pore channels in the silica template, and had a BET surface area of over 1000 m2g?1. It was found out that the radial alignment and sufficiently large pore size of hexagonally ordered pore channels in the silica spheres were effective to enhance the degree of order of the starburst structure in the nanocast carbon spheres and that ordered nanoporous carbon spheres could be obtained even from the MCM-41-type mesoporous silica. The diameters of the nanoporous carbon spheres were controlled in the sub-micrometer range by changing the sizes of silica templates. Furthermore, three-dimensionally ordered arrays consisting of nanoporous carbon spheres were successfully fabricated via the self-assembly of mesoporous silica/carbon composite spheres and the subsequent dissolution of the silica templates.  相似文献   

8.
9.
Self-aligned nanoporous TiO2 templates synthesized via dc current electrochemical anodization have been carefully analyzed. The influence of environmental temperature during the anodization, ranging from 2 °C to ambient, on the structure and morphology of the nanoporous oxide formation has been investigated, as well as that of the HF electrolyte chemical composition, its concentration and their mixtures with other acids employed for the anodization. Arrays of self-assembled titania nanopores with inner pores diameter ranging between 50 and 100 nm, wall thickness around 20–60 nm and 300 nm in length, are grown in amorphous phase, vertical to the Ti substrate, parallel aligned to each other and uniformly disordering distributed over all the sample surface. Additional remarks about the photoluminiscence properties of the titania nanoporous templates and the magnetic behavior of the Ni filled nanoporous semiconductor Ti oxide template are also included.  相似文献   

10.
Highly uniform, self-ordered anodic aluminum oxide (AAO) with an ordered nanoporous array can be effectively formed from industrially pure (99.5%) aluminum sheets through an anodizing program in a mixture solution of sulfuric and oxalic acids. The influences of anodizing variables, such as applied voltage, solution temperature, oxalic acid concentration, agitation rate, and sulfuric acid concentration, on the average pore diameter of AAO were systematically investigated using fractional factorial design (FFD). The applied voltage, and sulfuric acid concentration were found to be the key factors affecting the pore diameter of AAO films in the FFD study. The pore diameter of AAO is regularly increased from ca. 50 to 150 nm when the applied voltage and the concentration of sulfuric acid are gradually increased from 53 to 80 V and from 3.5 to 8 M, respectively. Fine tuning of the pore diameter for AAO films with an ordered, nanoporous, arrayed structure from industrially pure aluminum sheets can be achieved.  相似文献   

11.
《Electrochimica acta》2001,46(1-2):353-357
Multilayered fcc Co/Pd nanostructure films, prepared by electrodeposition on an electropolished polycrystalline copper substrate using a dual cell method, exhibit a remanent perpendicular magnetic anisotropy which depends on the Co film thickness. By decreasing the Co layer thickness and setting the Pd monolayer thickness as 1 nm, the remanent magnetic ratio (the ratio of the remanent magnetization perpendicular to the film plane in relation to that found on the plane of the film) became large and exceeded 1 for a Co layer thickness of about 0.4 nm, which indicates that the easy axis of magnetization of the multilayered film changed from a direction parallel to the film plane to a direction perpendicular to it at this Co film thickness. The magnetic behavior of the heat treated Co/Pd multilayered film was measured and discussed.  相似文献   

12.
Lily Kim 《Carbon》2005,43(7):1453-1459
We have developed a simple new method to control the diameter of carbon nanotubes (CNTs) using catalytic nanoparticle arrays fabricated by filling the pores of well-ordered porous anodic aluminum oxide (AAO) templates with a metal ion solution. Fe ion solution was used to fill the pores in which Co had been deposited electrochemically, and then the template was dried naturally on a magnet. After this process, the pores were widened in NaOH solution. Well-graphitized multi-walled CNTs were grown from almost all the pores and were very long in length and homogeneous in diameter. We were able to control the diameter of CNTs, simply, by changing the concentration of iron ion solution. For example, the average outer diameters of the CNTs are 7 ± 1.5, 13 ± 1, and 17 ± 1 nm when the concentrations of Fe ion in their mother solutions were 1.0 × 10−3, 3.0 × 10−3, and 6.0 × 10−3 M, respectively. The inner diameters of these CNTs corresponded to the calculated diameters of Fe nanoparticles by assuming that all Fe ions contained in each pore are reduced to a single nanoparticle. This means that homogeneous nanoparticles are made in each pore. Our new method could be used to fabricate homogeneous nanoparticles from most metal ion solutions.  相似文献   

13.
Anodized aluminum oxide (AAO) nanotemplates were prepared using the Al/Si substrates with an aluminum layer thickness of about 300 nm. A two-step anodization process was used to prepare an ordered porous alumina nanotemplate, and the pores of various sizes and depths were constructed electrochemically through anodic oxidation. The optimum morphological structure for large area application was constructed by adjusting the applied potential, temperature, time, and electrolyte concentration. SEM investigations showed that hexagonal-close-packed alumina nano-pore arrays were nicely constructed on Si substrate, having smooth wall morphologies and well-defined diameters. It is also reported that one dimensional copper nanopillars can be fabricated using the tunable nanopore sized AAO/Si template, by controlling the copper deposition process.  相似文献   

14.
阳极氧化铝(AAO)模板由于制备简单,成本较低,其孔径大小具有可控性等优点,是制备形状均匀、有序纳米电子材料的理想无机模板。直流恒压下,在0.3 M草酸溶液中对铝实施两步阳极氧化,并在第二次阳极氧化中途降低电压为初始电压的1/2获得Y形孔洞的氧化铝模板。利用扫描电子显微镜(SEM)对模板进行表征,结果表明:氧化铝模板高度有序,主干孔径约90 nm,分支孔径为(42±5)nm。  相似文献   

15.
Cobalt-nickel (Co-Ni) binary alloy nanowires of different compositions were co-deposited in the nanopores of highly ordered anodic aluminum oxide (AAO) templates from a single sulfate bath using alternating current (AC) electrodeposition. AC electrodeposition was accomplished without modifying or removing the barrier layer. Field emission scanning electron microscope was used to study the morphology of templates and alloy nanowires. Energy-dispersive X-ray analysis confirmed the deposition of Co-Ni alloy nanowires in the AAO templates. Average diameter of the alloy nanowires was approximately 40 nm which is equal to the diameter of nanopore. X-ray diffraction analysis showed that the alloy nanowires consisted of both hexagonal close-packed and face-centered cubic phases. Magnetic measurements showed that the easy x-axis of magnetization is parallel to the nanowires with coercivity of approximately 706 Oe. AC electrodeposition is very simple, fast, and is useful for the homogenous deposition of various secondary nanostuctured materials into the nanopores of AAO.  相似文献   

16.
A vertically aligned Pd nanowire array was successfully fabricated on an Au/Ti substrate using an anodic aluminum oxide (AAO) template by a direct voltage electrodeposition method at room temperature using diluted neutral electrolyte. The fabrication of Pd nanowires was controlled by analyzing the current–time transient during electrodeposition using potentiostat. The AAO template and the Pd nanowires were characterized by scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) methods and X-Ray diffraction (XRD). It was observed that the Pd nanowire array was standing freely on an Au-coated Ti substrate after removing the AAO template in a relatively large area of about 5 cm2, approximately 50 nm in diameter and 2.5 μm in length with a high aspect ratio. The nucleation rate and the number of atoms in the critical nucleus were determined from the analysis of current transients. Pd nuclei density was calculated as 3.55 × 108 cm−2. Usage of diluted neutral electrolyte enables slower growing of Pd nanowires owing to increase in the electrodeposition potential and thus obtained Pd nanowires have higher crystallinity with lower dislocations. In fact, this high crystallinity of Pd nanowires provides them positive effect for sensor performances especially.  相似文献   

17.
BACKGROUND: Non‐uniform distribution of pore size and depth of porous Si chip for a Fabry–Perot interferometer, in a previous study, led to relatively low sensitivity with poor reproducibility when its surface was immobilized with calyx crown derivative (Prolinker A). In this study, porous anodized aluminium oxide (AAO) was used as an alternative biochip substrate for detecting β‐galactosidase, and chip fabrication and surface functionalization methods were optimized. RESULTS: According to structural and spectral analysis of the AAO surface, an optimal operating voltage for anodization was determined as 40 V, which gave the best uniformity in pore size (about 30 nm) and fringe pattern. The ΔEOT (difference in effective optical thickness) showed a linear relationship (R2 = 0.9932) with β‐galactosidase concentration in the range 0.05–5 units enzyme mL?1, corresponding to 0.07–7.0 µg protein mL?1. CONCLUSIONS: With uniformly porous AAO immobilized with Prolinker A, sensitivity was enhanced about 200 times compared with the lowest detection concentration of 10 units mL?1 with the porous Si chip used in the previous study. Copyright © 2007 Society of Chemical Industry  相似文献   

18.
高度有序多孔阳极氧化铝制备工艺的研究   总被引:1,自引:0,他引:1  
影响多孔阳极氧化铝(porous anodica lumina,PAA)形貌及结构等的因素有很多,如抛光铝片的表面粗糙度、电解液温度、氧化电压、氧化时间、搅拌速率等。本文采用二次阳极氧化法,以草酸为电解液,研究了高度有序AAO模板制备过程的主要工艺条件,并采用扫描电子显微镜对模板的形貌进行表征。结果表明,在电解液温度为12℃,氧化电压为40V能够得到高度有序的、孔径为80nm左右的多孔阳极氧化铝膜。  相似文献   

19.
《Ceramics International》2017,43(6):5173-5181
In this paper, nanoporous silicon (NPSi) substrates with various pore diameters-ranging from 50 nm to 100 nm-were prepared by inductively coupled plasma (ICP) etching using anodic aluminum oxide (AAO) masks. Thin three-dimensional (3D) ZnO layers were deposited onto as-obtained NPSi substrates using atomic layer deposition (ALD). The results show that the silicon nanopore diameter has a large influence on the morphology, structure, and optical properties of thin 3D ZnO layers deposited onto NPSi substrate. A thin ZnO layer with optimal 3D morphology, crystallinity and luminescence performance is obtained when the silicon nanopore diameter is 90 nm. The results also reveal that a silicon nanopore diameter increase greatly benefits thin 3D ZnO layer growth given that the NPSi substrate morphology is not destroyed. These investigations bring important guiding role for attaining AAO-assisted 3D semiconductor materials with nanoscale structure and high luminescence performance.  相似文献   

20.
GaN wires are grown on a Si (111) substrate by metal organic vapour-phase epitaxy on a thin deposited AlN blanket and through a thin SiNx layer formed spontaneously at the AlN/Si interface. N-doped wires are used as templates for the growth of core-shell InGaN/GaN multiple quantum wells coated by a p-doped shell. Standing single-wire heterostructures are connected using a metallic tip and a Si substrate backside contact, and the electroluminescence at room temperature and forward bias is demonstrated at 420 nm. This result points out the feasibility of lower cost nitride-based wires for light-emitting diode applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号