首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
为提升足式机器人在复杂环境下的自适应稳定运动能力,针对具有主被动变刚度柔性关节的四足机器人提出一种对角小跑步态运动控制策略。基于弹簧负载倒立摆模型与控制目标解耦方法,设计了腾空相对角腿关节角规划,着地相前进速度、机身高度、俯仰角调节及腿部刚度主动调节控制策略,并基于足端触地状态完成了四足机器人对角小跑步态运动规划。研制了具有主被动变刚度柔性关节的四足机器人样机,通过实验验证了所提运动控制策略的有效性与正确性。  相似文献   

2.
为缓解液压驱动足式机器人动态步态行走时着地瞬间足端冲击对机器人系统及其运动控制的影响,提出了一种基于关节运动规划的机器人柔顺着地控制方法。以液压驱动单腿跳跃机器人为研究对象,分析机器人足端着地冲量,通过选择合适的机器人着地姿态和减小机器人着地前足端速度实现机器人柔顺着地,为此在空中相进行余弦速度曲线关节运动轨迹规划,以及着地相进行余弦函数关节运动轨迹规划。将该方法分别应用于基于MATLAB/Simulink软件建立的仿真模型和试验样机进行单腿竖直跳跃控制实验,仿真和试验结果显示采用该方法的机器人跳跃控制消除了足端着地瞬间地面作用力在膝关节液压缸无杆腔形成的液压冲击,实验结果表明提出的基于关节运动规划的机器人柔顺着地控制方法合理可行。  相似文献   

3.
为了解决四足机器人运动过程中的着地冲击力问题,设计了 一种基于力的阻抗控制的柔顺控制方法.以四足机器人单腿系统的结构为基础,对其进行运动学分析,进一步求解其速度雅克比矩阵和力雅克比矩阵.将单腿系统简化为"质量-弹簧-阻尼"模型,分析研究单腿系统的跳跃运动特性并规划质心运动轨迹.基于阻抗控制的思想,设计了基于力阻抗控制方...  相似文献   

4.
提出了一种新型弹性足式机器人腿部结构设计方法。设计了一种结构简单、响应速度快、抗冲击性强的新型足式机器人腿LCS-Leg(Linkage cable-drive spring leg)。该机器人腿采用弹性连杆机构和线驱动系统,有效降低了腿部惯量和着地冲击力,提高了机器腿的响应速度和减振抗冲能力。使用复数矢量法和D-H方法建立该机器腿运动学模型,基于此模型求解足端运动工作空间,分析了LCS-Leg的越障能力。设计单腿仿真试验平台,对两种不同结构的机器腿进行仿真,对比两者的质心高度、前进速度和足端接触力,验证了所设计机器腿的运动性能。试制弹性足式机器人腿及其试验平台,通过实物样机单腿行走试验,验证了设计方法的有效性,并完成了四足机器人整体结构设计。  相似文献   

5.
一种轮腿式变结构移动机器人研究   总被引:8,自引:0,他引:8  
提出一种新型的轮腿式变结构移动机器人.将四足哺乳动物腿式运动方式与轮式机构相结合,实现了轮式、腿式、轮腿结合等多种运动模式.在对机械本体结构分析的基础上,阐述了各种运动模式的运动学模型和步态生成方法.开发了主控计算机人机交互系统和基于ARM和DSP的嵌入式运动控制系统,采用无线以太网建立控制、反馈通道,实现了机器人的遥控/半自主运动控制.实验表明该机器人具有较强的非结构环境适应能力.  相似文献   

6.
针对跳跃运动足地冲击大的特点,基于仿生学设计一种液压驱动四足机器人单腿,分别建立单腿着地相和飞行相的运动学和动力学模型。为了满足单腿跳跃性能要求和减少足地冲击,提出基于三次曲线轨迹跟踪的跳跃方法。使用MSC.ADAMS和Simulink对单腿竖直跳跃过程进行仿真,并搭建了单腿竖直跳跃实验平台和闭环控制系统。  相似文献   

7.
将足式机器人运动模型简化成具有集中质量的机体和无质量的腿两部分,运用三分控制算法(弹跳高度、前进速度和机体姿态)对弹簧负载倒立摆模型进行控制,通过ADAMS与MATLAB的联合仿真结果表明该三分控制算法能够对弹簧负载倒立摆模型实现有效的控制,对足式机器人动力学控制具有重要的意义。  相似文献   

8.
针对四足机器人爬阶梯多采用基于零力矩点的静步态运动规划方法,存在攀爬速度慢、稳定性差的问题,设计了一种四足机器人快速“盲爬”阶梯策略。采用针对阶梯地形的轨迹规划摆动腿运动,基于广义动量法检测摆动腿与阶梯的磕碰事件,对磕碰事件进行了有效处理。根据本体感受器估计阶梯部分参数,结合稳定裕度概念规划机身的期望轨迹,采用模型预测控制对轨迹进行跟踪控制,保证了机器人快速稳定地攀爬阶梯。通过四足机器人实验平台验证所提方法的正确性,当机器人名义腿长为0.360 m、阶梯台阶高度为名义腿长的30.56%时,平均攀爬速度可达0.60 m/s(无量纲速度Fr达0.32)。  相似文献   

9.
为了提高六足机器人斜坡运动的稳定性,基于三支撑足步态,分析六足机器人的斜坡运动,得到斜坡运动静态稳定裕度与躯体俯仰角的定性关系;研究带反馈Hopf振荡器的输出特性与收敛系数、反馈量之间的关系,并设计基于带反馈Hopf振荡器的单腿三关节信号和斜坡步态发生器模型;确定收敛系数的组合,并引入躯体俯仰角构造反馈信号,实现在只改变膝关节摆角而不影响步态其他特性的情况下提高六足机器人斜坡运动的稳定性;搭建Matlab-ADAMS联合仿真平台与实物样机进行验证。仿真表明:与Hopf模型相比,基于带反馈Hopf模型六足机器人上12°斜坡稳定裕度提高6.3%,下12°斜坡稳定裕度提高7.2%;试验表明:在12°斜坡上前进1 m时,基于Hopf模型的六足机器人向左偏移0.3 m,基于带反馈Hopf模型的六足机器人向左偏移0.05 m,稳定裕度显著提高。  相似文献   

10.
针对四足机器人在复杂环境中难以保持稳定行走姿态的问题,在四足机器人trot步态的基础上,改进设计了一种侧摆型trot步态,通过四足机器人侧摆肩关节处电机对四足机器人的步态进行规律调整,使四足机器人在行走过程中更易保持稳定姿态。首先对侧摆型trot步态进行步态规划,分析侧摆型trot步态的稳定性;然后根据D-H参数法建立四足机器人单腿运动学模型并进行运动学分析求解;最后在MATLAB/Simulink软件中建立四足机器人动态仿真模型,以复合摆线运动轨迹为例,对侧摆型trot步态进行运动特性仿真分析。结果表明,基于复合摆线的侧摆型trot步态运动轨迹曲线连续平滑,四足机器人运动平稳。通过侧摆型trot步态仿真分析,验证了所研究侧摆型trot步态的稳定性和合理性,可以为搭建实验样机控制系统提供理论依据。  相似文献   

11.
针对无配重调节器的自行车机器人在低速下不易平衡的问题,以一种前轮驱动自行车机器人为对象,给出其力学模型及在45°车把转角下定车运动的实现方法。通过车轮转弯半径分析推导出后轮角速度、车架航向角速度与前轮驱动速度、车把转角的关系,采用拉格朗日方程建立系统的力学模型;根据部分反馈线性化原理,将包含车架横滚角的欠驱动子系统线性化,设计出自行车机器人45°车把转角下定车运动的平衡控制器。仿真控制结果表明,合理选择控制参数,控制器可以快速地实现自行车机器人在45°车把转角下的定车运动;样机试验结果进一步证明,控制器可以使自行车机器人在不超过驱动电动机的力矩容限下实现45°车把转角下的定车运动。定车运动的实现从理论和试验两个方面证明,自行车机器人在低速下可以不需要配重调节器,仅依靠车把转动和前轮驱动保持稳定平衡。  相似文献   

12.
基于螺旋理论的冗余液压驱动四足机器人运动学分析   总被引:1,自引:0,他引:1  
四足机器人的各种研究大多基于四条腿弯曲方向一致展开的。对于液压驱动且具有冗余度的四足机器人,静止姿态下,其前面两条腿与后面两条腿成对称弯曲状。为了研究这种机器人单腿运动和躯体运动状态,文中建立了基于螺旋理论的液压驱动四足机器人运动学模型,包括给出了单腿串联运动学逆解和躯体并联运动学正解。然后根据机器人行走过程设计出后面两条腿的髋关节与膝关节摆幅角度,通过建立的运动学模型,得到前面两条腿的关节变量及躯体姿态。最后通过MATLAB数值仿真和ADAMS虚拟样机实验,对机器人在一种行走方案下的躯体运动姿态进行仿真对比,验证了所建运动学模型的可靠性。  相似文献   

13.
基于仿生原理,以STM32F103VET6为核心的控制芯片构建硬件控制系统。利用无线遥控器使芯片的通用定时器产生18路PWM波控制机器人各个关节的运动,同时通过串口能在上位机实时显示GPS、超声波测距传感器、加速度计、陀螺仪的输出数据,该机器人能严格按三角步态行走,实现诸如直线、转弯、躲避障碍物等行走功能。实验结果表明,六足机器人的18个关节运动平稳,对复杂运动步态的控制精确,实现了在地面的稳定运动。  相似文献   

14.
Omnidirectional mobile robots are capable of arbitrary motion in an arbitrary direction without changing the direction of wheels because they can perform 3-DOF motions on a plane. This paper presents a novel mobile robot design with steerable omnidirectional wheels. This robot can operate in either omnidirectional or differential drive modes, depending on the drive conditions. In the omnidirectional mode, the robot has 3 DOF in motion and 1 DOF in steering, which can function as a continuously variable transmission (CVT). The CVT function can be used to enhance the efficiency of the robot operation by increasing the range of the velocity ratio of the robot velocity to wheel velocity. The structure and kinematics of this robot are presented in detail. In the proposed steering control algorithm, the steering angle is controlled such that the motors may operate in the region of high velocity and low torque, thus operating with maximum efficiency. Various tests demonstrate that the motion control of the proposed robot works satisfactorily and the proposed steering control algorithm for CVT can provide a higher efficiency than the algorithm using a fixed steering angle. In addition, it is shown that the differential drive mode can give better efficiency than the omnidirectionaldrive mode.  相似文献   

15.
The existing research of the active suspension system(ASS) mainly focuses on the different evaluation indexes and control strategies. Among the different components, the nonlinear characteristics of practical systems and control are usually not considered for vehicle lateral dynamics. But the vehicle model has some shortages on tyre model with side-slip angle, road adhesion coefficient, vertical load and velocity. In this paper, the nonlinear dynamic model of lateral system is considered and also the adaptive neural network of tire is introduced. By nonlinear analysis methods, such as the bifurcation diagram and Lyapunov exponent, it has shown that the lateral dynamics exhibits complicated motions with the forward speed. Then, a fuzzy control method is applied to the lateral system aiming to convert chaos into periodic motion using the linear-state feedback of an available lateral force with changing tire load. Finally, the rapid control prototyping is built to conduct the real vehicle test. By comparison of time response diagram, phase portraits and Lyapunov exponents at different work conditions, the results on step input and S-shaped road indicate that the slip angle and yaw velocity of lateral dynamics enter into stable domain and the results of test are consistent to the simulation and verified the correctness of simulation. And the Lyapunov exponents of the closed-loop system are becoming from positive to negative. This research proposes a fuzzy control method which has sufficient suppress chaotic motions as an effective active suspension system.  相似文献   

16.
为了实现液压作动的四足步行机器人的稳定行走,根据运动稳定裕量原则规划四足机器人的直行步态,保证三足支撑机体时稳定裕量为100 mm;针对液压缸运动加速度突变导致机体冲击振动的问题,提出了利用S型曲线作为各自由度的运动位移控制规律的方法。按照JQRI00型四足步行机器人原理样机的结构建立了虚拟样机模型,应用仿真软件对所设计步态进行了仿真,分析了步态的运动学、动力学特征和位移控制方法的运动特征;在四足步行机器人原理样机上进行了试验,并将试验与仿真结果进行了比较。研究结果表明,所设计的机器人步态可行,保证了机器人具有较好的行走稳定性;将S型曲线用于位移控制,消除了液压缸运动加速度的突变,进一步提高了机体运行的平稳性。  相似文献   

17.
两栖六足机器人不仅需应对崎岖地形对陆地爬行提出的挑战,还要解决机器人在水下灵活运动的控制问题。因此,本文首先提出了基于深度强化学习的崎岖地形运动控制方法。通过MuJoCo为机器人执行爬行任务构建交互环境,并采用近端策略优化(PPO)算法训练智能体使其获取适应于不同崎岖程度地形的控制策略。仿真数据表明,陆地控制策略可使机器人在平坦、轻度崎岖、重度崎岖3类地形上快速、稳定地完成前进任务。针对水下运动控制问题,本文通过分析机器人动力学模型将其分解为:采用视线法与PID控制器解决平面轨迹跟踪和深度控制问题。水下实验表明,机器人可在平面快速跟踪Sigmoid曲线且轨迹偏差不超过0.11 m。深度控制实验中,机器人可平稳到达指定深度且控制精度在0.02 m以内。  相似文献   

18.
设计了一种新型轮腿混合机器人,该机器人结合了轮式移动机构与足式移动机构的优点,阐述了机器人的总体结构。根据该轮腿混合机器人的运动要求和性能特点,设计了基于MEGA16单片机的整套机器人控制系统,该控制系统实现了用NRF2401无线控制机器人的基本运动。根据所遇路况,通过无线遥控可以控制和选择机器人的轮式运动和腿式运动两种工作模式,增加了机器人对环境的适应性。  相似文献   

19.
控制的仿生性和行走的稳定性是四足机器人步态研究中重要的两个方面。 为了提高四足机器人运动的稳定性,本文通 过 Hopf 振荡器搭建了 CPG 模型,分别实现了多种步态及步态之间的转换。 比较了基于 CPG 的步态控制方法和轨迹规划的步 态规划方法在行走上的优劣性。 为了同时利用 CPG 控制和轨迹规划的优点,提出采用神经网络将 CPG 控制曲线与足端轨迹 逆运动学获得的驱动曲线进行非线性映射,使得四足机器人在控制上具备仿生特性,在足端接触上具备零冲击特性。 仿真和实 验结果表明,采用 CPG 的步态生成方法和轨迹规划方法四足机器人的行走速度理论行走速度 80 mm/ s 相近,但采用 CPG 的步 态生成方法四足机器人侧向位移在±10 mm 以内且俯仰角在±1. 5°之间,而采用轨迹规划的控制方法四足机器人侧向位移在 ±35 mm 以内且俯仰角在±4°之间,可见两种控制方式对侧向偏移和俯仰运动的表现不一致。 通过实验测量可知,机器人采用 walk 步态行走速度为 18. 57 mm/ s,与理论行走速度 20 mm/ s 接近,步态转换后以 trot 步态行走,行走速度为 76. 15 mm/ s,与理 论行走速度 80 mm/ s 接近,少许误差可能是装配和行走过程打滑导致的。 测量其侧向偏移程度可知,其侧向的偏移量左侧在 15 mm 内,右侧在 25 mm 内,其侧向偏移量均在合适的范围内,证明所提算法的有效性。  相似文献   

20.
本文讨论了载体位置无控、姿态受控情况下,空间机器人姿态、关节协调运动的滑模控制问题。首先,由系统动量守恒关系和拉格朗日第二类方法,建立了漂浮基空间机器人的系统动力学方程。以此为基础,在滑模控制器输出端加入低通滤波器,设计了漂浮基空间机器人载体姿态与机械臂各关节协调运动的控制方案。此控制方案可有效地滤除滑模控制器输出的高频振动信号,减少了空间机器人在运动过程中引起的振动。最后,数值仿真的结果,证实了该控制方案的有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号