首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
传统的频繁项集挖掘方法具有一定的局限性。Apriori算法需要重复扫描输入数据,导致很高的I/O负载,算法性能不高;Fp-growth算法需要在内存中建立Fp-tree并根据Fp-tree挖掘频繁项集,导致算法受到计算机的内存限制。在大数据时代,由于挖掘数据规模十分巨大,更加凸显这些传统算法的局限性。对此,一方面改进传统的频繁项集挖掘算法,另一方面基于Spark框架实现分布式频繁项集挖掘算法(FIMBS)。实验结果表明,该算法相比基于MapReduce框架的关联规则算法具有显著的优势。  相似文献   

2.
现有FP-growth频繁集挖掘算法在处理大数据时存在时空效率不高的问题,且内存的使用随着数据的增加已经无法满足把待挖掘数据压缩存储在单个内存中,为此,提出一种基于MapReduce模型的频繁项集并行挖掘算法。该算法采用一种基于key/value键值对直接扫描value寻找条件模式基的方式,同时通过在原有FP-tree树节点中新增一个带频繁项前缀的域空间来构建一颗新的条件模式树NFP-tree,使得对一项频繁项的条件模式基进行一次建树一次遍历就可以得到相应的频繁项集。对所提出的算法在Hadoop平台进行了验证与分析,实验结果表明该算法效率较传统FP-growth算法平均提高16.6%。  相似文献   

3.
随着数据量的增长,如何快速有效发现频繁项集已成为挖掘关联规则的核心问题,而并行计算和闭频繁项集分别是一种处理大量数据直接有效的方法和频繁项集的无失真信息最小集合。分析一些经典闭频繁项集算法和并行关联规则算法及其不足,提出一种基于多核微机的并行闭频繁项集挖掘算法,提高了闭频繁项集挖掘的效率。  相似文献   

4.
由于互联网技术急速发展及其用户迅速地增加,很多网络服务公司每天不得不处理TB级甚至更大规模的数据量。在如今的大数据时代,如何挖掘有用的信息正变成一个重要的问题。关于数据挖掘(Data Mining)的算法在很多领域中已经被广泛运用,挖掘频繁项集是数据挖掘中最常见且最主要的应用之一,Apriori则是从一个大的数据集中挖掘出频繁项集的最为典型的算法。然而,当数据集比较大或使用单一主机时,内存将会被快速消耗,计算时间也将急剧增加,使得算法性能较低,基于MapReduce的分布式和并行计算则被提出。文中提出了一种改进的MMRA (Matrix MapReduce Algorithm)算法,它通过将分块数据转换成矩阵来挖掘所有的频繁k项集;然后将提出的算法和目前已经存在的两种算法(one-phase算法、k-phase算法)进行比较。采用Hadoop-MapReduce作为实验平台,并行和分布式计算为处理大数据集提供了一个潜在的解决方案。实验结果表明,改进算法的性能优于其他两种算法。  相似文献   

5.
针对并行MRPrePost(parallel prepost algorithm based on MapReduce)频繁项集挖掘算法在大数据环境存在运行时间长、内存占用量大和节点负载不均衡的问题,提出一种基于DiffNodeset的并行频繁项集挖掘算法(parallel frequent itemsets mining using DiffNodeset,PFIMD).该算法首先采用一种数据结构DiffNodeset,有效地避免了N-list基数过大的问题;此外提出一种双向比较策略(2-way comparison strategy,T-wcs),以减少两个DiffNod-eset在连接过程中的无效计算,极大地降低了算法时间复杂度;最后考虑到集群负载对并行算法效率的影响,进一步提出了一种基于动态分组的负载均衡策略(load balancing strategy based on dynamic grouping,LBSBDG),该策略通过将频繁1项集F-list中的每项进行均匀分组,降低了集群中每个计算节点上PPC-Tree树的规模,进而减少了先序后序遍历PPC-Tree树所需的时间.实验结果表明,该算法在大数据环境下进行频繁项集挖掘具有较好的效果.  相似文献   

6.
数据流闭频繁项集挖掘算法得到了广泛的研究,其中一个典型的工作就是NewMomen、算法。针对New-Moment算法存在搜索空间大而造成算法时间效率低的问题,提出了一种改进的数据流闭频繁项集挖掘算法A-Ncw-Moment。它设计了一个二进制位表示项目与扩展的频繁项目列表相结合的数据结构,来记录数据流信息及闭频繁项集。在窗体初始阶段,首先挖掘频繁1一项集所产生的支持度为最大的最长闭频繁项集,接着提出新的“不需扩展策略”和“向下扩展策略”来避免生成大量中间结果,快速发现其余闭频繁项集,达到极大缩小搜索空间的目的。在窗体滑动阶段,提出“动态不频繁剪枝策略”来从已生成的闭频繁项集中快速删除非闭频繁项集,并提出“动态不搜索策略”来动态维护所有闭频繁项集的生成,以降低闭频繁项集的维护代价,提高算法的效率。理论分析与实验结果表明,A-New-Moment算法具有较好的性能。  相似文献   

7.
论述了频繁项集数据挖掘算法,并采用自底向上和自顶向下遍历搜索分类方法,对已有的频繁项集挖掘算法进行了分析和比较。  相似文献   

8.
Apriori算法是解决频繁项集挖掘最常用的算法之一,但多轮迭代扫描完整数据集的计算方式,严重影响算法效率且难以并行化处理。随着数据规模的持续增大,这一问题日益严重。针对这一问题,提出了一种基于项编码和Spark计算框架的Apriori并行化处理方法——IEBDA算法,利用项编码完整保存项集信息,在不重复扫描完整数据集的情况下完成频繁项集挖掘,同时利用Spark的广播变量实现并行化处理。与其他分布式Apriori算法在不同规模的数据集上进行性能比较,发现IEBDA算法从第一轮迭代后加速效果明显。结果表明,该算法可以提高大数据环境下的多轮迭代的频繁项集挖掘效率。  相似文献   

9.
李广璞  黄妙华 《计算机科学》2018,45(Z11):1-11, 26
关联分析作为数据挖掘的主要研究模块之一,主要用于发现隐藏在大型数据集中的强关联特征。而多数关联规则挖掘任务可分为频繁模式(频繁项集、频繁序列、频繁子图)的产生和规则的产生。前者发现数据集中满足最小支持度阈值的项集、序列与子图;后者从上一步发现的频繁模式中提取高置信度的规则。频繁项集挖掘是许多数据挖掘任务中的关键问题,也是关联规则挖掘算法的核心。十几年来,学者们致力于提高频繁项集的生成效率,从不同的角度进行改进以提高算法效率,大量的高效可伸缩性算法被提出。文中对频繁项集挖掘进行深入分析,对完全频繁项集、闭频繁项集、极大频繁项集的典型算法进行介绍和评述,最后对频繁项集挖掘算法的研究方向进行简要分析。  相似文献   

10.
一种基于单事务项集组合的频繁项集挖掘算法   总被引:2,自引:0,他引:2  
曾波 《计算机科学》2008,35(1):196-197
Apriori是挖掘频繁项集的基本算法,目前该算法及其优化变种都没有解决候选项及重复扫描事务数据库的问题.文章通过对Apriori及其优化算法的深入探究,提出了一种基于单事务组合项集的挖掘算法,该算法在一个事务内部对\"数据项\"进行组合,在事务数据库中对所有相同\"项集\"进行计数.不经过迭代过程,不产生候选项集,所有频繁项集的挖掘过程只需对事务数据库一次扫描,提高了频繁项集挖掘效率.  相似文献   

11.
快速挖掘频繁项集的并行算法   总被引:3,自引:0,他引:3  
何波  王华秋  刘贞  王越 《计算机应用》2006,26(2):391-0392
传统的挖掘频繁项集的并行算法存在数据偏移、通信量大、同步次数较多和扫描数据库次数较多等问题。针对这些问题,提出了一种快速挖掘频繁项集的并行算法(FPMFI)。FPMFI算法让各计算机节点独立地计算局部频繁项集,然后与中心节点交互实现数据汇总,最终获得全局频繁项集。理论分析和实验结果表明FPMFI算法是有效的。  相似文献   

12.
一种有效的并行频繁项集挖掘算法*   总被引:1,自引:0,他引:1  
传统的挖掘频繁项集的并行算法存在各节点间负载不均衡、同步开销过大、通信量大等问题。针对这些问题,提出了一种多次传送重新分配数据的并行算法(MRPD)。MRPD算法在第l步时将数据库重新划分成若干组,并根据各节点的需要多次传送分组;各节点获得完整分组后异步地计算频繁项集;所有节点计算完成后,得到全部频繁项集。理论分析和实验结果表明MRPD算法是有效的。  相似文献   

13.
目前已提出了许多基于Apriori算法思想的频繁项目集挖掘算法,这些算法可以有效地挖掘出事务数据库中的短频繁项目集,但对于长频繁项目集的挖掘而言,其性能将明显下降.为此,提出了一种频繁闭项目集挖掘算法MFCIA,该算法可以有效地挖掘出事务数据库中所有的频繁项目集,并对其更新问题进行了研究,提出了一种相应的频繁闭项目集增量式更新算法UMFCIA,该算法将充分利用先前的挖掘结果来节省发现新的频繁闭项目集的时间开销.实验结果表明算法MFCIA是有效可行的.  相似文献   

14.
介绍了目前关联规则挖掘中效率较高的FP-growth算法,并对FP-growth算法中存在的几点不足进行了相应的改进,改进后的算法从时间性能和空间性能两方面都得到了很大的提升。  相似文献   

15.
提出了一种新的CMNL-SW(Closed map and num list-sliding window)挖掘算法。具体使用数据结构Closedmap存储挖掘到的闭合项集和Num list存储所有不同项的序号,通过对添加新事务和删除旧事务包含的项序号进行简单的并集和该事务与之相关已经挖掘到的闭合项集进行交集运算来更新当前滑动窗口,使之能够根据用户任意指定的支持度阈值在线输出数据流上闭合频繁项集信息。通过理论分析和对真实数据集Mushroom,Retail-chain和人工合成数据集T40I10D100K的挖掘结果表明,提出的算法在时空效率上明显优于同类经典算法Moment和CFI-Stream,并且随着数据流上处理事务数的递增和快速改变表现出良好的稳定性。  相似文献   

16.
频繁闭项目集挖掘是数据挖掘研究中的一个重要研究课题.目前已有的频繁闭项目集挖掘算法主要针对单机环境,有关分布式环境下的全局频繁闭项目集挖掘算法的研究尚不多见.为此,本文提出了一种快速挖掘全局频繁闭项目集算法,并对其更新问题进行了研究;提出了一种相应的频繁闭项目集增量式更新算法,该算法将充分利用先前的挖掘结果来节省发现新的全局频繁闭项目集的时间开销.实验结果表明算法是有效的.  相似文献   

17.
在数据挖掘研究中,频繁闭项目集挖掘成为重要的研究方向.目前已有的频繁闭项目集挖掘算法主要针对单机环境,有关分布式环境下的全局频繁闭项目集挖掘算法的研究尚不多见.针对无共享体系结构数据水平分布的情况,提出了一种分布式快速挖掘全局频繁闭项目集增量式更新算法,算法通过对各节点候选频繁项目集进行预处理,有效地降低网络通信量,提高全局频繁闭项目集挖掘算法的效率,该算法充分利用前次挖掘结果来发现新的全局频繁闭项目集,具有较高的效率.理论分析和实验结果表明算法是有效的.  相似文献   

18.
陶克  王意洁 《计算机工程》2010,36(18):49-51
针对频繁闭项集挖掘算法中数据结构与处理机制复杂的问题,提出窗口快速滑动的数据流频繁闭项集挖掘算法——MFWSR。算法通过采用紧致的数据结构和简化的判断过程提高时空效率,支持响应不同用户支持度阈值的查询。实验结果表明,在保持已有算法精度的情况下,MFWSR具有更高的时空效率。  相似文献   

19.
基于频繁项集挖掘最大频繁项集和频繁闭项集   总被引:3,自引:1,他引:2  
提出了基于频繁项集的最大频繁项集(BFI-DMFI)和频繁闭项集挖掘算法(BFI-DCFI)。BFI-DMFI算法通过逐个检测频繁项集在其集合中是否存在超集确定该项集是不是最大频繁项集;BFI-DCFI算法则是通过挖掘所有支持度相等的频繁项集中的最大频繁项集组合生成频繁闭项集。该类算法的提出,为关联规则的精简提供了一种新的解决方法。  相似文献   

20.
提出了一种基于堆栈的频繁闭项集挖掘算法SBFCI(Stack Based Frequent Closed Itemsets Generation),该算法采用栈技术避免了以往基于FP—tree的算法需对每个后缀模式递归构造FP—tree,并在上挖掘的弊端。从而大幅缩减了生成频繁闭项集的时间与空间开销。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号