共查询到20条相似文献,搜索用时 125 毫秒
1.
《计算机应用与软件》2015,(10)
传统的频繁项集挖掘方法具有一定的局限性。Apriori算法需要重复扫描输入数据,导致很高的I/O负载,算法性能不高;Fp-growth算法需要在内存中建立Fp-tree并根据Fp-tree挖掘频繁项集,导致算法受到计算机的内存限制。在大数据时代,由于挖掘数据规模十分巨大,更加凸显这些传统算法的局限性。对此,一方面改进传统的频繁项集挖掘算法,另一方面基于Spark框架实现分布式频繁项集挖掘算法(FIMBS)。实验结果表明,该算法相比基于MapReduce框架的关联规则算法具有显著的优势。 相似文献
2.
《计算机应用与软件》2015,(9)
现有FP-growth频繁集挖掘算法在处理大数据时存在时空效率不高的问题,且内存的使用随着数据的增加已经无法满足把待挖掘数据压缩存储在单个内存中,为此,提出一种基于MapReduce模型的频繁项集并行挖掘算法。该算法采用一种基于key/value键值对直接扫描value寻找条件模式基的方式,同时通过在原有FP-tree树节点中新增一个带频繁项前缀的域空间来构建一颗新的条件模式树NFP-tree,使得对一项频繁项的条件模式基进行一次建树一次遍历就可以得到相应的频繁项集。对所提出的算法在Hadoop平台进行了验证与分析,实验结果表明该算法效率较传统FP-growth算法平均提高16.6%。 相似文献
3.
《计算机应用与软件》2013,(3)
随着数据量的增长,如何快速有效发现频繁项集已成为挖掘关联规则的核心问题,而并行计算和闭频繁项集分别是一种处理大量数据直接有效的方法和频繁项集的无失真信息最小集合。分析一些经典闭频繁项集算法和并行关联规则算法及其不足,提出一种基于多核微机的并行闭频繁项集挖掘算法,提高了闭频繁项集挖掘的效率。 相似文献
4.
由于互联网技术急速发展及其用户迅速地增加,很多网络服务公司每天不得不处理TB级甚至更大规模的数据量。在如今的大数据时代,如何挖掘有用的信息正变成一个重要的问题。关于数据挖掘(Data Mining)的算法在很多领域中已经被广泛运用,挖掘频繁项集是数据挖掘中最常见且最主要的应用之一,Apriori则是从一个大的数据集中挖掘出频繁项集的最为典型的算法。然而,当数据集比较大或使用单一主机时,内存将会被快速消耗,计算时间也将急剧增加,使得算法性能较低,基于MapReduce的分布式和并行计算则被提出。文中提出了一种改进的MMRA (Matrix MapReduce Algorithm)算法,它通过将分块数据转换成矩阵来挖掘所有的频繁k项集;然后将提出的算法和目前已经存在的两种算法(one-phase算法、k-phase算法)进行比较。采用Hadoop-MapReduce作为实验平台,并行和分布式计算为处理大数据集提供了一个潜在的解决方案。实验结果表明,改进算法的性能优于其他两种算法。 相似文献
5.
针对并行MRPrePost(parallel prepost algorithm based on MapReduce)频繁项集挖掘算法在大数据环境存在运行时间长、内存占用量大和节点负载不均衡的问题,提出一种基于DiffNodeset的并行频繁项集挖掘算法(parallel frequent itemsets mining using DiffNodeset,PFIMD).该算法首先采用一种数据结构DiffNodeset,有效地避免了N-list基数过大的问题;此外提出一种双向比较策略(2-way comparison strategy,T-wcs),以减少两个DiffNod-eset在连接过程中的无效计算,极大地降低了算法时间复杂度;最后考虑到集群负载对并行算法效率的影响,进一步提出了一种基于动态分组的负载均衡策略(load balancing strategy based on dynamic grouping,LBSBDG),该策略通过将频繁1项集F-list中的每项进行均匀分组,降低了集群中每个计算节点上PPC-Tree树的规模,进而减少了先序后序遍历PPC-Tree树所需的时间.实验结果表明,该算法在大数据环境下进行频繁项集挖掘具有较好的效果. 相似文献
6.
7.
数据流闭频繁项集挖掘算法得到了广泛的研究,其中一个典型的工作就是NewMomen、算法。针对New-
Moment算法存在搜索空间大而造成算法时间效率低的问题,提出了一种改进的数据流闭频繁项集挖掘算法A-Ncw-
Moment。它设计了一个二进制位表示项目与扩展的频繁项目列表相结合的数据结构,来记录数据流信息及闭频繁项
集。在窗体初始阶段,首先挖掘频繁1一项集所产生的支持度为最大的最长闭频繁项集,接着提出新的“不需扩展策略”
和“向下扩展策略”来避免生成大量中间结果,快速发现其余闭频繁项集,达到极大缩小搜索空间的目的。在窗体滑动
阶段,提出“动态不频繁剪枝策略”来从已生成的闭频繁项集中快速删除非闭频繁项集,并提出“动态不搜索策略”来动
态维护所有闭频繁项集的生成,以降低闭频繁项集的维护代价,提高算法的效率。理论分析与实验结果表明,A-New-
Moment算法具有较好的性能。 相似文献
8.
Apriori算法是解决频繁项集挖掘最常用的算法之一,但多轮迭代扫描完整数据集的计算方式,严重影响算法效率且难以并行化处理。随着数据规模的持续增大,这一问题日益严重。针对这一问题,提出了一种基于项编码和Spark计算框架的Apriori并行化处理方法——IEBDA算法,利用项编码完整保存项集信息,在不重复扫描完整数据集的情况下完成频繁项集挖掘,同时利用Spark的广播变量实现并行化处理。与其他分布式Apriori算法在不同规模的数据集上进行性能比较,发现IEBDA算法从第一轮迭代后加速效果明显。结果表明,该算法可以提高大数据环境下的多轮迭代的频繁项集挖掘效率。 相似文献
9.
关联分析作为数据挖掘的主要研究模块之一,主要用于发现隐藏在大型数据集中的强关联特征。而多数关联规则挖掘任务可分为频繁模式(频繁项集、频繁序列、频繁子图)的产生和规则的产生。前者发现数据集中满足最小支持度阈值的项集、序列与子图;后者从上一步发现的频繁模式中提取高置信度的规则。频繁项集挖掘是许多数据挖掘任务中的关键问题,也是关联规则挖掘算法的核心。十几年来,学者们致力于提高频繁项集的生成效率,从不同的角度进行改进以提高算法效率,大量的高效可伸缩性算法被提出。文中对频繁项集挖掘进行深入分析,对完全频繁项集、闭频繁项集、极大频繁项集的典型算法进行介绍和评述,最后对频繁项集挖掘算法的研究方向进行简要分析。 相似文献
10.
一种基于单事务项集组合的频繁项集挖掘算法 总被引:2,自引:0,他引:2
Apriori是挖掘频繁项集的基本算法,目前该算法及其优化变种都没有解决候选项及重复扫描事务数据库的问题.文章通过对Apriori及其优化算法的深入探究,提出了一种基于单事务组合项集的挖掘算法,该算法在一个事务内部对"数据项"进行组合,在事务数据库中对所有相同"项集"进行计数.不经过迭代过程,不产生候选项集,所有频繁项集的挖掘过程只需对事务数据库一次扫描,提高了频繁项集挖掘效率. 相似文献
11.
12.
13.
对于频繁项集挖掘,采用一种FP-数组技术来减少FP-tree的遍历时间,减少数据集的扫描次数,在此基础上提出了一种基于FP-tree进行频繁项集挖掘的FP-growth+算法,提高了算法的效率。最后的实验证明了该算法的有效性。 相似文献
14.
15.
《Expert systems with applications》2014,41(6):2703-2712
A concept lattice is an ordered structure between concepts. It is particularly effective in mining association rules. However, a concept lattice is not efficient for large databases because the lattice size increases with the number of transactions. Finding an efficient strategy for dynamically updating the lattice is an important issue for real-world applications, where new transactions are constantly inserted into databases. To build an efficient storage structure for mining association rules, this study proposes a method for building the initial frequent closed itemset lattice from the original database. The lattice is updated when new transactions are inserted. The number of database rescans over the entire database is reduced in the maintenance process. The proposed algorithm is compared with building a lattice in batch mode to demonstrate the effectiveness of the proposed algorithm. 相似文献
16.
17.
回顾了常见的关联规则算法,关注频繁闭项集这一非常有发展前途的方法.在综合Tough型约束与频繁闭项集的基础上,提出了关联规则的一种新算法--基于Tough型约束的频繁闭项集挖掘算法(TC-based FCIM Algorithm),分析了算法中选择过程和过滤过程这两个重要过程的先后顺序. 相似文献
18.
事务间频繁项集将传统的单维事务内关联规则扩展到多维跨事务关联规则,但事务问频繁项集的数量随滑 动时同间窗口的增大而迅速增加.利用频繁闭项集的特点.提出事务间频繁闭项集的概念及其挖掘算法(FCITA).该算法采用分割和条件数据库技术,避免生成庞大的扩展数据库;利用扩展二进制形武压缩事务,从而提高支持度的计算效事.此外,动态排序和哈希表极大地减少了频繁闭项集的测试次数.仿真比较表明,FCITA算法具有较高的挖掘效率. 相似文献
19.
为克服FCMMiner算法在挖掘频繁闭情节时存在的不足,基于最小且非重叠发生的支持度定义,提出一种事件序列上频繁闭情节挖掘算法FCM++。定义两种特殊的数据结构:频繁情节树(FET)、层头表(LH),采用广度优先搜索策略进行层扩展操作,扩展时将挖掘的频繁情节逐层压缩到FET和LH结点链中。通过动态维护FET及闭合性检查过程挖掘所有的频繁闭情节。实验结果表明,FCM++算法较FCMMiner算法有更高的挖掘效率,能有效地挖掘所有的频繁闭情节。 相似文献
20.
发现最大频繁项目集是数据挖掘应用中的关键问题;为寻求避免生成大量的候选项集,或生成频繁模式树的挖掘算法,提出一种从事务项集对应的最大频繁项集求全部属性项集的最大频繁项集的新算法IPA(Intersection Pruning Algorithm)。该算法通过交集剪枝实现自顶向下和自底向上的搜索最大频繁项集,并使用属性项的分布数据和已生成的交集等多种信息来减少求交集的次数;该算法最多只用求(1-最小支持度)×|D|+1个事务项集和其他事务项集的交集,从而可有效降低算法的时间复杂度;实验表明该算法有效可行,并且该算法易于实现。 相似文献