首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
The class II trans-activator (CIITA) is a bi- or multi-functional domain protein which plays a critical role in the expression of MHC class II genes. We report that removal of the N-terminal 151 amino acids, encompassing all of the acidic domain but leaving intact the proline/serine/threonine-rich domain, results in a mutant protein with potent suppressive properties for MHC class II expression. HeLa cells stably or transiently transfected with mutant CIITA constructs showed up to 99% suppression of MHC class II antigen induction by IFN-gamma and marked suppression of HLA-DRA mRNA expression. Transient transfection of a B lymphoma line resulted in up to 89% reduction of constitutive MHC class II expression within 5 days and suppression of HLA-DRA mRNA synthesis.  相似文献   

5.
6.
Retrovirus-mediated gene transfer was used to restore expression to MHC class II-negative patient cells from complementation group A(II) of MHC class II immunodeficiency or bare lymphocyte syndrome (BLS). The cells of these patients do not transcribe MHC class II genes due to a defect in the trans-acting factor, CIITA. We constructed a vector, pGAG/Ii-CIITA, with the MHC class II-associated invariant chain promoter driving CIITA expression. Cocultivation with the virus producer line was consistently shown to be the optimal method for infection of all cell types. The induction of MHC class II expression after virus infection was rapid, and high levels of expression were achieved in cell lines within 1 wk of infection. In addition, expression was easily detectable even in peripheral blood cells of a BLS patient within a few days. Cell lines maintained in vitro for several months remained positive, and the proportion of cells with surface expression of DR was correlated with the number of integrated proviruses. Moreover, transduced B lymphoblastoid cell lines readily established tumors in CB17-scid/scid mice, and the MHC class II-positive cells demonstrated a clear competitive advantage in vivo. Ultimately, we hope to use this transduction system to restore normal immune function to a BLS patient for which no other therapeutic option currently exists.  相似文献   

7.
8.
9.
The physiopathology of experimental cerebral malaria (CM), an acute neurological complication of Plasmodium berghei ANKA (PbA) infection, involves interferon-gamma (IFN-gamma) and tumour necrosis factor-alpha (TNF-alpha), two cytokines that are known to modulate major histocompatibility complex (MHC) molecule expression. The aim of this study was to evaluate whether the genetic susceptibility to CM is related to the constitutive or IFN-gamma-induced expression of MHC molecules on brain microvessels. To this end, brain microvascular endothelial cells (B-MVEC) were isolated from CM-susceptible (CM-S, CBA/J) and resistant (CM-R, BALB/c) mice. By flow cytometry, we found that less than 5% of CM-S B-MVEC constitutively expressed MHC class I molecules, in contrast to up to 90% of CM-R B-MVEC. Upon stimulation with IFN-gamma, the percentage of positive cells for MHC class I molecules in CM-S B-MVEC became comparable to CM-R B-MVEC, but a higher fluorescence intensity existed on CM-S B-MVEC compared with CM-R B-MVEC. MHC class II molecules were not constitutively expressed on B-MVEC from either strain. IFN-gamma-induced expression of MHC class II (I-A, I-E) molecules was significantly higher in CM-S than CM-R B-MVEC both in percentage of positive cells and fluorescence intensity. These data demonstrate that absent or low MHC class I and higher inducibility of MHC class II expression on B-MVEC are associated with the genetic susceptibility to CM.  相似文献   

10.
11.
The CD4 protein is expressed on a subset of human T lymphocytes that recognize antigen in the context of major histocompatibility complex (MHC) class II molecules. Using Chinese hamster ovary (CHO) cells expressing human CD4, we have previously demonstrated that the CD4 protein can mediate cell adhesion by direct interaction with MHC class II molecules. In T lymphocytes, CD4 can also function as a signaling molecule, presumably through its intracellular association with p56lck, a member of the src family of protein tyrosine kinases. In the present report, we show that p56lck can affect cell adhesion mediated by CD4 and MHC class II molecules. The expression of wild-type p56lck in CHO-CD4 cells augments the binding of MHC class II+ B cells, whereas the expression of a mutant p56lck protein with elevated tyrosine kinase activity results in decreased binding of MHC class II+ B cells. Using site-specific mutants of p56lck, we demonstrate that the both the enzymatic activity of p56lck and its association with CD4 are required for this effect on CD4/MHC class II adhesion. Further, the binding of MHC class II+ B cells induces CD4 at the cell surface to become organized into structures resembling adhesions-type junctions. Both wild-type and mutant forms of p56lck influence CD4-mediated adhesion by regulating the formation of these structures. The wild-type lck protein enhances CD4/MHC class II adhesion by augmenting the formation of CD4-associated adherens junctions whereas the elevated tyrosine kinase activity of the mutant p56lck decreases CD4-mediated cell adhesion by preventing the formation of these structures.  相似文献   

12.
13.
BACKGROUND: Major-histocompatibility-complex (MHC) class II deficiency is an autosomal recessive primary immunodeficiency disease in which MHC class II molecules are absent. It is a genetically heterogeneous disease of gene regulation resulting from defects in several transactivating genes that regulate the expression of MHC class II genes. The mutations responsible for MHC class II deficiency are classified according to complementation group (a group in which the phenotype remains uncorrected in pairwise fusions of cells). There are three known complementation groups (A, B, and C). METHODS: To elucidate the genetic defect in patients with MHC class II deficiency that was not classified genetically, we performed direct complementation assays with the three genes known to regulate the expression of MHC class II genes, CIITA, RFX5, and RFXAP, and the relevant mutations were identified in each patient. RESULTS: Mutations in the RFXAP gene were found in three patients from unrelated families, and the resulting defect was classified as belonging to a novel complementation group (D). Transfection with the wild-type RFXAP gene restored the expression of MHC class II molecules in the patients' cells. CONCLUSIONS: Mutations in a novel MHC class II transactivating factor, RFXAP, can cause MHC class II deficiency. These mutations abolish the expression of MHC class II genes and lead to the same clinical picture of immunodeficiency as in patients with mutations in the other two MHC class II regulatory genes.  相似文献   

14.
15.
In this study, we examined the regulation of mitogen-activated protein kinase phosphatase (MKP-1) expression by insulin in primary vascular smooth muscle cell cultures. Insulin caused a rapid time- and dose-dependent induction of MKP-1 mRNA and protein expression. Blockade of nitric-oxide synthase (NOS) with NG-monomethyl-L-arginine acetate, and cGMP with RpcGMP, completely inhibited MKP-1 expression. Insulin-mediated MKP-1 expression was preceded by inducible NOS (iNOS) induction and cGMP production. Blockade of phosphatidylinositol 3-kinase (PI3-kinase) signaling with wortmannin inhibited insulin-mediated iNOS protein induction, cGMP production, and MKP-1 expression. To evaluate potential interactions between NOS and the mitogen-activated protein kinase (MAPK) signaling pathways, we employed PD98059 and SB203580, two specific inhibitors of ERKs and p38 MAPK. These inhibitors abolished the effect of insulin on MKP-1 expression. Only PD98059 inhibited insulin-mediated iNOS protein induction. Vascular smooth muscle cells from spontaneous hypertensive rats exhibited a marked decrease in MKP-1 induction due to defects in insulin-induced iNOS expression because of reductions in PI3-kinase activity. Treatment with sodium nitroprusside and 8-bromo-cGMP restored MKP-1 mRNA expression to levels comparable with controls. We conclude that insulin-induced MKP-1 expression is mediated by PI3-kinase-initiated signals, leading to the induction of iNOS and elevated cGMP levels that stimulates MKP-1 expression.  相似文献   

16.
We show that major histocompatibility complex (MHC) class II molecules on B cells transit signals which regulate adhesion in a negative manner. Engagement of MHC class II molecules with antibodies results in detachment of B cells previously bound to interferon-gamma-activated human umbilical cord venous endothelial cells. This process depends on metabolic energy, active signaling and protein tyrosine kinase activity. The adhesion pathway influenced by this signaling event is neuraminidase sensitive. The anti-adhesive signaling program is activated in B cell lines with a mature phenotype, e.g. normal B cells from spleen and tonsil. In contrast, cell lines with a pre-B cell phenotype and normal B cells from peripheral blood are refractory to MHC class II-mediated regulation of adhesion. These results extend to neoplastic cells from patients with lymphoproliferative diseases representing different stages of B cell maturation. These results suggest that MHC class II-mediated signals regulate B cell adhesion in a developmentally programmed fashion; this might have implications for clinical behavior of B cell malignancies.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号