首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 52 毫秒
1.
The fabrication, structure, and properties of unstrained modulation-doped, 1-μm-long and 10-μm-wide gate, field effect transistors made of In0.3Ga0.7As/In0.29As0.71As heterojunctions grown on GaAs substrates using compositionally step-graded buffer layers are described. These devices have a transconductance of 335 mS/mm, fmax of 56 GHz, and a gate breakdown voltage of 23.5 V  相似文献   

2.
We have experimentally studied the suitability of nanometer-scale In0.7Ga0.3As high-electron mobility transistors (HEMTs) as an n-channel device for a future high-speed and low-power logic technology for beyond-CMOS applications. To this end, we have fabricated 50- to 150-nm gate-length In0.7Ga0.3As HEMTs with different gate stack designs. This has allowed us to investigate the role of Schottky barrier height (PhiB) and insulator thickness (tins) on the logic characteristics of In0.7Ga0.3As HEMTs. The best 50-nm HEMTs with the highest PhiB and the smallest tins exhibit an ION/IOFF ratio in excess of 104 and a subthreshold slope (S) below 86 mV/dec. These nonoptimized 50-nm In0.7Ga0.3As HEMTs also show a logic gate delay (CV/I) of around 1 ps at a supply voltage of 0.5 V, while maintaining an ION/IOFF ratio above 104, which is comparable to state-of-the-art Si MOSFETs. As one of the alternatives for beyond-CMOS technologies, we believe that InAs-rich InGaAs HEMTs hold a considerable promise.  相似文献   

3.
In an effort to enhance the conduction band discontinuity between channel and insulator, InxAl1-xAs/n+-In 0.53Ga0.47As heterostructure field-effect transistors (HFETs) were fabricated with InAs mole fractions in the In xAl1-xAs gate insulator of x=0.52 (lattice matching), 0.48, 0.40, and 0.30. Decreasing the InAs mole fraction in the insulator results in reduced forward- and reverse-bias gate currents, increased reverse gate breakdown voltage, and reduced real-space transfer of hot electrons from channel to gate. Down to x =0.40, these improvements trade off with a slightly reduced transconductance, but the gain in gate bias swing results in an increase in maximum current drivability. From x=0.40 to x=0.30, there is a drastic decrease in transconductance, coincident with a high density of misfit dislocations  相似文献   

4.
New In0.4Al0.6As/In0.4Ga0.6 As metamorphic (MM) high electron mobility transistors (HEMTs) have been successfully fabricated on GaAs substrate with T-shaped gate lengths varying from 0.1 to 0.25 μm. The Schottky characteristics are a forward turn-on voltage of 0.7 V and a gate breakdown voltage of -10.5 V. These new MM-HEMTs exhibit typical drain currents of 600 mA/mm and extrinsic transconductance superior to 720 mS/mm. An extrinsic current cutoff frequency fT of 195 GHz is achieved with the 0.1-μm gate length device. These results are the first reported for In0.4 Al0.6As/In0.4Ga0.6As MM-HEMTs on GaAs substrate  相似文献   

5.
Transconductance as high as 676 mS/mm at 300 K was observed to 0.7×10-μm2 n-channel devices (HIGFETs) made on epilayers with Al0.3Ga0.7As insulator thickness of 200 Å and In0.15Ga0.85As channel thickness of 150 Å. An FET K value (K=Wg Uε/2aLg) as large as 10.6 mA/V 2 was also measured from another device with transconductance of 411 mS/mm. The high K values are achieved under normal FET operation without hole-injection or drain-avalanche breakdown effects. These results demonstrate the promise of pseudomorphic (Al,Ga)As/(In,Ga)As HIGFETs for high-performance circuit applications  相似文献   

6.
Ga0.51In0.49P/In0.15Ga0.85 As/GaAs pseudomorphic doped-channel FETs exhibiting excellent DC and microwave characteristics were successfully fabricated. A high peak transconductance of 350 mS/mm, a high gate-drain breakdown voltage of 31 V and a high maximum current density (575 mA/mm) were achieved. These results demonstrate that high transconductance and high breakdown voltage could be attained by using In0.15Ga0.85As and Ga0.51In0.49P as the channel and insulator materials, respectively. We also measured a high-current gain cut-off frequency ft of 23.3 GHz and a high maximum oscillation frequency fmax of 50.8 GHz for a 1-μm gate length device at 300 K. RF values where higher than those of other works of InGaAs channel pseudomorphic doped-channel FETs (DCFETs), high electron mobility transistors (HEMTs), and heterostructure FETs (HFETs) with the same gate length and were mainly attributed to higher transconductance due to higher mobility, while the DC values were comparable with the other works. The above results suggested that Ga0.51In0.49P/In0.15Ga0.85 As/GaAs doped channel FET's were were very suitable for microwave high power device application  相似文献   

7.
An Al0.3Ga0.7As/GaAs/Al0.3Ga0.7 As double heterojunction field-effect transistor has been fabricated, the novel feature being a pn junction back gate. A device with 2 μm channel length has yielded a change in transconductance by a factor of 2 for a change in back gate voltage of 1 V. The performance of this device shows that this approach could be used in realising novel devices, such as velocity modulation transistors. Also, the change in threshold voltage with back gate bias could be useful in implementing digital circuits  相似文献   

8.
In0.5(Al0.3Ga0.7)0.5 P/In0.2Ga0.8As single- and double-heterojunction pseudomorphic high electron mobility transistors (SH-PHEMTs and DH-PHEMTs) on GaAs grown by gas-source molecular beam epitaxy (GSMBE) were demonstrated for the first time. SH-PHEMTs with a 1-μm gate-length showed a peak extrinsic transconductance gm of 293 mS/mm and a full channel current density Imax of 350 mA/mm. The corresponding values of gm and Imax were 320 mS/mm and 550 mA/mm, respectively, for the DH-PHEMTs. A short-circuit current gain (H21) cutoff frequency fT of 21 GHz and a maximum oscillation frequency fmax of 64 GHz were obtained from a 1 μm DH device. The improved device performance is attributed to the large ΔEc provided by the In0.5(Al0.3Ga0.7)0.5P/In 0.2Ga0.8As heterojunctions. These results demonstrated that In0.5(Al0.3Ga0.7)0.5P/In 0.2Ga0.8As PHEMT's are promising candidates for microwave power applications  相似文献   

9.
Si-delta-doped Al0.25Ga0.75As/InxGa1-xAs (x=0.15-0.28) P-HEMT's, prepared by LP-MOCVD, are investigated. The large conduction band discontinuity leads to 2-DEG density as high as 2.1×1012/cm2 with an electron mobility of 7300 cm2/V·s at 300 K. The P-HEMT's with 0.7×60 μm gate have a maximum extrinsic transconductance of 380 mS/mm, and a maximum current density of 300 mA/mm. The S-parameter measurements indicate that the current gain and power gain cutoff frequencies are 30 and 61 GHz, respectively, The RF noise characteristics exhibit a minimum noise figure of 1.2 dB with an associated gain of 10 dB at 10 GHz. Due to the efficient doping technique, the electron mobility and transconductance obtained are among the best reported for MOCVD grown P-HEMT's with the similar structure  相似文献   

10.
In0.08Ga0.92As MESFETs were grown in GaAs (100) substrates by molecular beam epitaxy (MBE). The structure comprised an undoped compositionally graded InxGa1-x As buffer layer, an In0.08Ga0.92As active layer, and an n+-In0.08Ga0.92As cap layer. FETs with 50-μm width and 0.4-μm gate length were fabricated using the standard processing technique. The best device showed a maximum current density of 700 mA/mm and a transconductance of 400 mS/mm. The transconductance is extremely high for the doping level used and is comparable to that of a 0.25-μm gate GaAs MESFET with an active layer doped to 1018 cm-3. The current-gain cutoff frequency was 36 GHz and the power-gain cutoff frequency was 65 GHz. The current gain cutoff frequency is comparable to that of a 0.25-μm gate GaAs MESFET  相似文献   

11.
Significant improvements in gate voltage swings in heterostructures prepared by low-pressure metalorganic chemical vapor deposition are discussed. Structures utilizing a compositionally graded InxGa1-xAs channel exhibited a very flat transconductance region of 2 V. The gate voltage swings of single and double δ-doped GaAs/In0.25Ga0.75As/GaAs structures were 2.5 and 2.8 V, respectively. All structures also exhibited high extrinsic transconductance as well as high saturation current densities  相似文献   

12.
A heterostructure metal-insulator-semiconductor field-effect transistor (MISFET) with a modulation-doped channel is proposed. In this device, a very thin undoped subchannel is located between the undoped wide-bandgap insulator and a thin heavily doped channel. In the depletion mode of operation, electron transport takes place along the heavily doped channel. When the device enters the accumulation mode of operation, electrons pile up against the heterointerface in the high-mobility undoped subchannel. This results in markedly improved transport characteristics at the onset of accumulation. The concept is demonstrated in the In0.52Al0.48As/In0.53 Ga0.47As system on InP. A 1.5-μm-gate-length MISFET shows a unity current-gain cutoff frequency of 37 GHz  相似文献   

13.
New In0.52Al0.48As/In0.53Ga0.47 As transferred-substrate high electron mobility transistors (TS-HEMTs) have been successfully fabricated on 2-in Silicon substrate with 0.12 μm T-shaped gate length. These new TS-HEMTs exhibit typical drain currents of 450 mA/mm and extrinsic transconductance up to 770 mS/mm. An extrinsic current gain cutoff frequency fT of 185 GHz is obtained. That result is the first reported for In0.52Al0.48As/In0.53Ga0.47 As TS-HEMTs on Silicon substrate  相似文献   

14.
The transport properties of a two-dimensional electron gas in Al 0.3Ga0.7As/GaAs quantum-well delta-doped heterostructures are studied. Electron energy subbands in the quantum well were calculated by a self-consistent method. The FETs having a gate length of 1.3 μm showed a transconductance as high as 340 mS/mm. The FETs also showed a broad plateau of transconductance around its peak, which is not typical in MODFETs  相似文献   

15.
Short-pulse drain current versus gate voltage transfer characteristics measured for modulation-doped HFETs (MODFETs) with four donor-layer-channel-layer combinations-(1) Al0.3Ga0.7 As-GaAs, (2) Al0.2Ga0.8As-GaAs, (3) Al0.3Ga0.7As-In0.2Ga0.8As, and (4) Al0.2Ga0.8As-In0.2 a0.8 As-are compared with the DC transfer characteristics. The measurements are relevant to high-speed switching in HFET circuits. Significant shifts in threshold voltage are observed between the DC and short-pulse characteristics for the structures with n+-Al0.3Ga0.7As donor layers, while the corresponding shifts for structures with n+-Al0.2Ga0.8As donor layers are relatively small or virtually nonexistent  相似文献   

16.
Electrical characteristics of an n-channel Al0.3Ga0.7As/GaAs/In0.13Ga0.87 As pseudomorphic HEMT (PHEMT) with Lg=1 μm on GaAs are characterized under optical input (Popt). Gate leakage and drain current have been analyzed as a function of VGS, V DS, and Popt. We observed monotonically increasing gate leakage current due to the energy barrier lowering by the optically induced photovoltage, which means that gate input characteristics are significantly limited by the photovoltaic effect. However, we obtained a strong nonlinear photoresponsivity of the drain current, which is limited by the photoconductive effect. We also proposed a device model with an optically induced parasitic Al0.3Ga0.7As MESFET parallel to the In0.13Ga0.87As channel PHEMT for the physical mechanism in the drain current saturation under high optical input power  相似文献   

17.
The authors report the DC and RF performance of nominally 0.2-μm-gate length atomic-planar doped pseudomorphic Al0.3Ga0.7As/In0.25Ga0.75As modulation-doped field-effect transistors (MODFETs) with fT over 120 GHz. The devices exhibit a maximum two-dimensional electron gas (2 DEG) sheet density of 2.4×1012 cm-2, peak transconductance g m of 530-570 mS/mm. maximum current density of 500-550 mA/mm, and peak current-gain cutoff frequency fT of 110-122 GHz. These results are claimed to be among the best ever reported for pseudomorphic AlGaAs/InGaAs MODFETs and are attributed to the high 2 DEG sheet density, rather than an enhanced saturation velocity, in the In0.25Ga0.75As channel  相似文献   

18.
The performance of polysilicon thin-film transistors (TFTs) formed by a 600°C process was improved using a two-layer gate insulator of photochemical-assisted vapor deposition (photo-CVD) SiO2 and atmospheric-pressure chemical vapor deposition (APCVD) SiO2. The photo-CVD SiO2, 100 Å thick, was deposited on polysilicon and followed by APCVD SiO2 of 1000 Å thickness. The TFT had a threshold voltage of 8.3 V and a field-effect mobility of 35 cm2/V-s, which were higher than those of the conventional TFT with a single-layer gate SiO2 of APCVD. Hydrogenation by hydrogen plasma was more effective for the new TFT than for the conventional device  相似文献   

19.
Performance results for a normally on, electroabsorptive, surface-normal Fabry-Perot reflection modulator are presented. The device employs a cavity with a 100 Å GaAs/100 Å Al0.3 Ga0.7As multiple quantum well and top and bottom quarter-wave mirrors with 4 and 19.5 periods, respectively. Very low values of off-state reflectance were measured, giving a maximum contrast ratio >1000 (30 dB) and a maximum reflectance difference of 64.3%. The contrast ratio is, to the authors' knowledge, the largest reported to date  相似文献   

20.
Forward gate current-voltage characteristics and their temperature dependence are investigated for i-Al0.3Ga0.7As/n-GaAs doped-channel HIGFET's (DC-HIGFET's) with the gate length of 0.3 μm. The temperature coefficient of the gate forward turn-on voltage (Vf) varies with the thickness (tU) of an i-AlGaAs layer, and shows a minimum value of -0.8~-0.9 mV/deg at tu=10 nm  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号