首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The authors discuss the fabrication and characteristics of high-power (PCW=430 mW) InGaAs/InGaAsP/InGaP ridge waveguide lasers emitting at λ=0.98 μm, which is the optimum wavelength for pumping erbium-doped fiber amplifiers. In the past, high-power operation of Al-free pump lasers has been limited to 150 mW because of catastrophic optical damage of the mirror facet. This problem has been largely removed by increasing the spot size of the laser with the aid of an improved waveguide design. As a result, Al-free lasers can now achieve a maximum power comparable to the conventional GaAlAs-based pump lasers for λ=0.98 μm  相似文献   

2.
We demonstrate high-performance InGaAsPN quantum well based long-wavelength lasers grown on GaAs substrates, nitrogen containing lasers emitting in the λ=1.2- to 1.3-μm wavelength range were grown by gas source molecular beam epitaxy using a RF plasma nitrogen source. Under pulsed excitation, lasers emitting at λ=1.295 μm exhibited a record low threshold current density (JTH) of 2. 5 kA/cm2. Lasers grown with less nitrogen in the quantum well exhibited significantly lower threshold current densities of JTH =1.9 kA/cm2 at λ=1.27 μm and JTH=1.27 kA/cm2 at λ=1.2 μm. We also report a slope efficiency of 0.4 W/A and an output power of 450 mW under pulsed operation for nitrogen containing lasers emitting at 1.2 μm  相似文献   

3.
Continuous wave laser action has been achieved in a superlattice quantum cascade device operating on surface plasmon waveguide modes. The emission wavelength λ~19 μm is by far the longest ever reported for continuous wave III-V semiconductor lasers. The output power at cryogenic temperature is of the order of the mW  相似文献   

4.
Dependence of relaxation oscillation frequency (fr) on the bandgap wavelength of InGaAsP barrier layers (λg b) and number of quantum wells (Nw) were investigated for the first time, for 1.3 μm InGaAsP/InGaAsP compressively strained multiquantum well (MQW) lasers. 1.3 times higher fr was confirmed for strained-layer MQW lasers with large N w (Nw⩾7) and wide bandgap barrier layers (λgb=1.05 μm) at the same injection level, compared with unstrained MQW lasers having the same well thicknesses and the same emitting wavelength. This enhancement mainly results from increased differential gain due to strain effects separated from the quantum-size effect  相似文献   

5.
Long-wavelength (λ=13.3 μm) unipolar lasing at 283 K from self-organised In0.4Ga0.6As/GaAs quantum dots, due to intersubband transitions in the conduction band, is demonstrated for the first time. The threshold current density under continuous wave operation is 1.1 kA/cm2 for a 60 μm×1.2 mm broad-area plasmon-enhanced waveguide device and the maximum power output is ≈ μW. The long intersubband relaxation time in quantum dots, together with the short lifetime in the ground state, due to interband stimulated emission, help to achieve the necessary population inversion and gain  相似文献   

6.
Quantum cascade distributed feedback (QC-DFB) lasers based on a heterogeneous-cascade two-wavelength active waveguide core and a multisectioned cavity featuring two different Bragg gratings are demonstrated. Optimised lasers display singlemode emission at λ~5.0 and 7.5 μm simultaneously and a tunability on both modes equal to single-wavelength QC-DFB lasers  相似文献   

7.
Separate confinement single-quantum-well lasers with 100-120 Å-thick strained Ga1-xInxAs/GaAs active layers have been grown on (100) GaAs substrates by metalorganic chemical vapour deposition. Ten-stripe proton-implanted arrays with 90 μm-wide aperture and 250 μm cavity length emit 200 mW CW optical power at wavelengths 0.87⩽λ⩽0.95 μm. Lifetest data on an uncoated device emitting 90 mW/facet at 50°C and λ=0.95 μm suggest a mean-time-to-failure in excess of 2500 h at room temperature. The performance of lasers with strained Ga1-xInxAs quantum wells is comparable to that of unstrained AlxGa1-xAs/GaAs quantum-well lasers without facet coating  相似文献   

8.
The development of a Fabry-Perot-type Ti,Er:LiNbO3 waveguide laser of optimized CW output power up to 63 mW (λs =1561 nm) at a pump power level of 210 mW (λp=1480 nm) and a slope efficiency of up to 37% is reported. The theoretical model for the waveguide laser is presented and applied to determine the optimum resonator configuration using waveguide parameters obtained from a detailed characterization of the laser sample. With pulsed pumping, waveguide laser pulses of up to 6.2 W peak power were observed. Apart from residual relaxation oscillations, the laser emission proved to be shot-noise limited  相似文献   

9.
The authors report the measured gain of a highly efficient erbium-doped fiber amplifier pumped at wavelengths between 1.46 and 1.51 μm. The optimal pump wavelength, λopt, was determined to be 1.475 μm. At this wavelength, the maximum gain coefficients for signals at 1.531 and 1.544 μm were 2.3 and 2.6 dB/mW, respectively. At λopt, high gains ranging from 32 dB at pump power Pp=20 mW up to 40 dB at P p=80 mW were obtained. These modest pump powers are within the capabilities of currently available 1.48-μm diode lasers. The width about λopt for 3-dB gain variation exceeded 27 nm for Pp=10 mW and 40 nm for Pp >20 mW. With this weak dependence on pump wavelength, single-longitudinal-mode lasers do not have a significant advantage over practical Fabry-Perot multimode pump lasers  相似文献   

10.
An accurate theoretical analysis is presented describing optical amplification in Er-diffused Ti:LiNbO3 channel waveguides. It follows as far as possible the theory already developed for Er-doped fibers. As optical pumping around λp≈1.48 μm is considered, a quasi-two-level model for the Er3+ ions is used with wavelength-dependent cross sections. The optical gain in the 1.53 μm<λ<1.64-μm wavelength range is evaluated. The characteristic parameters, as Er concentration profile, cross sections, pump, and signal mode distributions and waveguide (scattering) losses are taken from experiments. Examples of numerically calculated pump-, small-signal-gain-, and ASE-evolutions are presented. The model has been tested by comparing computed and experimentally observed gain characteristics for Xˆ- and Yˆ-cut LiNbO3; an almost quantitative agreement has been obtained  相似文献   

11.
We demonstrate high performance, λ=1.3- and 1.4-μm wavelength InGaAsN-GaAs-InGaP quantum-well (QW) lasers grown lattice-matched to GaAs substrates by gas source molecular beam epitaxy (GSMBE) using a solid As source. Threshold current densities of 1.15 and 1.85 kA/cm2 at λ=1.3 and 1.4 μm, respectively, were obtained for the lasers with a 7-μm ridge width and a 3-mm-long cavity. Internal quantum efficiencies of 82% and 52% were obtained for λ=1.3 and 1.4 μm emission, respectively, indicating that nonradiative processes are significantly reduced in the quantum well at λ=1.3 μm due to reduced N-H complex formation. These Fabry-Perot lasers also show high characteristic temperatures of T0 =122 K and 100 K at λ=1.3 and 1.4 μm, respectively, as well as a low emission wavelength temperature dependence of (0.39±0.01) nm/°C over a temperature range of from 10°C to 60°C  相似文献   

12.
The variation of the small-signal response of 1.5 μm unstrained multiple quantum-well lasers with the number of wells (NW ) is studied theoretically in a two-band-model (TB) approximation. The quasi-Fermi energies, together with gain and spontaneous emission rate spectra, are formulated analytically assuming a finite-well model and flatband conditions, including the contributions from carriers in both the wells and the barriers. The gain spectrum shows two major peaks located at the lowest heavy-hole and light-hole transitions. Therefore, the lasers under investigation are treated as three-level systems. The optical confinement factors are evaluated numerically by the matrix transfer method. The traditional rate equations are reformulated and solved for the frequency and damping rate of the relaxation oscillations in terms of an equivalent circuit  相似文献   

13.
Zhang  G. 《Electronics letters》1994,30(15):1230-1232
High power and high quantum efficiency Al-free InGaAs/GaInAsP/GaInP GRINSCH SQW lasers emitting at 0.98 μm are reported. A CW output power as high as 580 mW and single lateral mode power up to 280 mW were achieved for the Al-free ridge waveguide lasers at room temperature. The lasers exhibited a high internal quantum efficiency of 99% and low internal waveguide loss of 3.2 cm-1. A high characteristic temperature of 217 K and low threshold current density of 109 A/cm2 were also obtained. The results are the best obtained for Al-free 0.98 μm pumping lasers  相似文献   

14.
The effect of internal feedback through bus waveguide reflectivity has been numerically evaluated as a key parameter for the improvement of direct modulation properties of microring lasers. According to calculations, appropriate values of feedback power result in damped relaxation oscillations and consequent transient chirp reduction. An evaluation of the above technique at 10 Gb/s including fiber transmission over 10 and 20 km indicates that microring lasers could efficiently operate as low-cost directly modulated transmitters in metro/access networks.   相似文献   

15.
9.2 W continuous wave (CW) optical power at a heatsink temperature 10°C and 12.2 W in a regime with stabilised temperature of the laser chip is demonstrated from a 100 μm aperture InGaAs/AlGaAs (λ=1.03 μm) laser diode with 0.4 μm wide GaAs waveguide. Thus, record-high optical power densities of 30 MW/cm2 and 40 MW/cm2 correspondingly are achieved at the front facet without catastrophic optical mirror damage (COMD)  相似文献   

16.
Relaxation oscillations and gain switching of erbium-doped waveguide ring lasers (EDWRLs) are studied using numerical simulations based on time-dependent rate-propagation equations. The counter-directional wave suppression is analyzed for different waveguide ring cavity configurations and pumping schemes. It is shown that the counter-directional wave suppression in unidirectional EDWRLs undergoes relaxation oscillations synchronously with oscillating power. It is also shown that the suppression in the first spike is maximal, so the gain switching technique provides the most favorable conditions for unidirectional lasing. Furthermore, for the one-end-pumped gain-switched EDWRL, highly unidirectional operation is possible with no intracavity elements included. In this case the counter-directional wave suppression considerably exceeds its steady-state value. The gain-switched suppression caused by intracavity elements is close to the steady-state value.   相似文献   

17.
The spectral properties of the guided-wave Nd fluorescence and results of laser oscillation in Ti-indiffused single-mode Nd:MgO:LiNbO 3 waveguides and waveguide cavities, respectively, are reported. The splitting and polarization behavior of the fluorescence lines around 0.9, 1.08, and 1.37 μm were studied. Using a single-mode diode laser as a pump source (λp=814.6 nm), an oscillation threshold in an 8-mm-long structure of 2.1-mW absorbed pump power has been obtained. An output power up to 310 μW (limited by the available pump power), a slope efficiency of 16% at power levels >150 μW, and an emission linewidth of 0.21 nm (at λs=1085 nm) have been measured  相似文献   

18.
The mode size, effective pump area, and coupling efficiency as function of initial Ti-stripe width W, diffusion temperature T, and initial Ti-stripe thickness H in c-cut Ti-diffused Er:LiNbO3 waveguide laser have been studied theoretically, taking into account optical pumping λp=1.477 μm and 0.98 μm. The main features of the mode sizes in terms of these diffusion parameters were collected and, as compared with the experimental results, a qualitative agreement has been achieved. The effective pump areas exhibit both significant initial Ti-stripe width and diffusion temperature dependence, especially for W>9 μm and T>1050°C, whereas the initial Ti-stripe thickness can hardly give influence when pumping with λp=0.98 μm radiation. On the other hand, coupling efficiency is approximately unchanged with values 0.76-0.78 for λp=1.477 μm and 0.8-0.85 for λ p=0.98 μm, indicating that there are no optimized values of these parameters to increase slope efficiency through coupling efficiency. Moreover, the 0.98 μm pumping reveal lower threshold and higher coupling efficiency than 1.477-μm pumping. Finally, the appropriate waveguide fabrication parameters were proposed for the fabrication of a more efficient laser  相似文献   

19.
A high-contrast, three port optical AND gate based on the photoconductive effect in Ga0.47In0.53As:Fe and operating in the λ=1.3-5 μm wavelength range is demonstrated. A 250:1 optical power contrast ratio (or 48 dB in electrical power after detection) is obtained in an optical-to-optical time division demultiplexing of a 100 MHz pulse train by a 6.25 MHz clock, both at λ=1.3 μm, with the demultiplexed output pulses at λ=1.5 μm  相似文献   

20.
We demonstrate high-performance Al-free InGaAsN-GaAs-InGaP-based long-wavelength quantum-well (QW) lasers grown on GaAs substrates by gas-source molecular beam epitaxy using a RF plasma nitrogen source. Continuous wave (CW) operation of InGaAsN-GaAs QW lasers is demonstrated at λ=1.3 μm at a threshold current density of only JTH =1.32 kA/cm2. These narrow ridge (W=8.5 μm) lasers also exhibit an internal loss of only 3.1 cm-1 and an internal efficiency of 60%. Also, a characteristic temperature of T0=150 K from 10°C to 60°C was measured, representing a significant improvement over conventional λ=1.3 μm InGaAsP-InP lasers. Under pulsed operation, a record high maximum operating temperature of 125°C and output powers greater than 300 mW (pulsed) and 120 mW (CW) were also achieved  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号