共查询到20条相似文献,搜索用时 0 毫秒
1.
特征抽取是中文文本分类的重点和难点,文中比较了不同特征单元对分类性能的影响,将字特征与词特征相结合以期更好地表现文本特征。并在构建的实验系统中比较了不同特征单元的分类准确性,发现采用混合特征来进行分类,能得到较好的分类效果。 相似文献
2.
基于多特征选择的中文文本分类 总被引:1,自引:0,他引:1
自动文本分类就是在给定的分类体系下,让计算机根据文本的内容确定与它相关联的类别。特征选择作为文本分类中的关键,困难之一是特征空间的高维性,因此寻求一种有效的特征选择方法,降低特征空间的维数,成为文本分类中的重要问题。在分析已有的文本分类特征选择方法的基础上,实现了一种组合不同特征选择方法的多特征选择方法,应用于KNN文本分类算法,实验表明,多特征选择方法分类效果比单一的特征选择方法分类效果有明显的提高。 相似文献
3.
自动文本分类就是在给定的分类体系下,让计算机根据文本的内容确定与它相关联的类别。特征选择作为文本分类中的关键,困难之一是特征空间的高维性,因此寻求一种有效的特征选择方法,降低特征空间的维数,成为文本分类中的重要问题。在分析已有的文本分类特征选择方法的基础上,实现了一种组合不同特征选择方法的多特征选择方法,应用于KNN文本分类算法,实验表明,多特征选择方法分类效果比单一的特征选择方法分类效果有明显的提高。 相似文献
4.
本文以比较购物搜索中的商品数据自动分类为应用背景,探讨短文本数据的分类问题,比较了常用的文本分类(Text Categorization)算法的特点,在此基础上提出k-NN与NB相结合的多分类器方案,对于NB算法分类不可信的情况下改用k-NN算法进行再次分类,并充分利用NB的中间结果供k-NN剪枝时作参考。实验数据表明该方法在与NB相近的时间复杂度下可明显地提高短文本分类的正确率和召回率,达到实际应用的要求。 相似文献
5.
提出了一种基于字特征的中文文本分类方法。该方法的出发点是变常用的基于表层的匹配为基于概念的匹配,用汉字特征向量作为文本的表示方法。算法根据文本中汉字的特征建立文本表示矩阵和类别表示矩阵,并通过线性最小二乘算法形成分类矩阵。 相似文献
6.
7.
8.
9.
为了高速度、高质量地浏览网络上的大量中文文本,提出了一种文本凹凸树结构的可视化浏览机制,并给出其彤式描述.通过以关键字和概念词典标注的最小概念集标识结点建立文本分类的层次树结构,为用户快速洲览文本提供有效路径.通过统计方法进行文本摘要抽取,按大纲、逻辑主题词段落和摘要洲览文本内容,提高了搜索查询速度与阅读效率,满足了用户快速、主动浏览文本的需求. 相似文献
10.
文本分类是文本信息处理领域一个非常重要的研究方向,为了节省文本分类处理中所需的存储空间和运算时间,在分类之前用高效的算法减少所需分析的数据是非常必要的。该文介绍了一种文本分类中特征降维的方法。和传统的方法不同,该文所涉及的特征是从句子中提取的不同长度的词组,然后用比数比来对其进行特征选择。实验结果表明,该文提出的方法与传统方法相比,提高了文本分类的准确率。 相似文献
11.
目前中文文本分类算法大多利用词语或词语映射为特征项的分类方式,未考虑中文语法语义的特点,导致分类性能较低。为此,提出中文文本的意群分类算法。通过中文依存句法分析结果制定规则提取意群,并作为特征项表示文本,进而采用支持向量机的方法对训练集进行学习,最终构建类别意群库对测试文本进行分类。实验结果表明,与基于词语的分类方法相比,意群分类算法在分类性能上平均提升3个百分点,平均查准率达到97%。 相似文献
12.
使用最大熵模型进行文本分类 总被引:1,自引:0,他引:1
最大熵模型是一种在广泛应用于自然语言处理中的概率估计方法。文中使用最大熵模型进行了文本分类的研究。通过实验,将其和Bayes、KNN、SVM三种典型的文本分类器进行了比较,并且考虑了不同特征数目和平滑技术对基于最大熵模型的文本分类器的影响。结果显示它的分类性能胜于Bayes方法,与KNN和SVM方法相当,表明这是一种非常有前途的文本分类方法。 相似文献
13.
14.
一种应用向量聚合技术的KNN中文文本分类方法 总被引:3,自引:2,他引:3
针对KNN文本分类方法中不考虑特征词关联的问题,提出一种改进方法.这种方法基于对体现词和类别问相关程度的CHI统计值分布的分析,应用向量聚合技术很好地解决了关联特征词的提取问题.其特点在于:聚合文本向量中相关联的特征词作为特征项,从而取代传统方法中一个特征词对应向量一维的做法,这样不但缩减了向量的维教,而且加强了特征项对文本分类的贡献.实验表明该方法明显提高了分类的准确率和召回率。 相似文献
15.
David Lee从心理学的角度提出Lee模型并将其用于文本分类。该文将Lee模型引入Nafve Bayes和TFIDF中,比较了影响度和TF-IDF两种不同的文档表示方法对分类精度的影响,并对Lee模型的不同因素对算法的影响效果作了分析。结果表明影响度的文档表示方法比TF-IDF更好一些,启发式的部分读取策略能以较小的时间代价极大地改善分类算法的精度。 相似文献
16.
17.
18.
文本分类中的特征选取 总被引:21,自引:0,他引:21
研究了文本分类学习中的特征选取,主要集中在大幅度降维的评估函数,因为高维的特征集对分类学习未必全是重要的和有用的。还介绍了分类的一些方法及其特点。 相似文献
19.