首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Osteoclasts, the multinucleated cells that resorb bone, develop from hematopoietic cells of monocyte/macrophage lineage. Osteoclast-like cells (OCLs) are formed by coculturing spleen cells with osteoblasts or bone marrow stromal cells in the presence of bone-resorbing factors. The cell-to-cell interaction between osteoblasts/stromal cells and osteoclast progenitors is essential for OCL formation. Recently, we purified and molecularly cloned osteoclastogenesis-inhibitory factor (OCIF), which was identical to osteoprotegerin (OPG). OPG/OCIF is a secreted member of the tumor necrosis factor receptor family and inhibits osteoclastogenesis by interrupting the cell-to-cell interaction. Here we report the expression cloning of a ligand for OPG/OCIF from a complementary DNA library of mouse stromal cells. The protein was found to be a member of the membrane-associated tumor necrosis factor ligand family and induced OCL formation from osteoclast progenitors. A genetically engineered soluble form containing the extracellular domain of the protein induced OCL formation from spleen cells in the absence of osteoblasts/stromal cells. OPG/OCIF abolished the OCL formation induced by the protein. Expression of its gene in osteoblasts/stromal cells was up-regulated by bone-resorbing factors. We conclude that the membrane-bound protein is osteoclast differentiation factor (ODF), a long-sought ligand mediating an essential signal to osteoclast progenitors for their differentiation into osteoclasts. ODF was found to be identical to TRANCE/RANKL, which enhances T-cell growth and dendritic-cell function. ODF seems to be an important regulator in not only osteoclastogenesis but also immune system.  相似文献   

2.
Colony-stimulating factors (CSF) may play a role in bone resorption. To examine whether osteoblasts secrete colony-stimulating activity (CSA) in response to parathyroid hormone (PTH) and parathyroid hormone-related peptide (PTHrP), conditioned medium (CM) from ROS 17/2.8 cells and primary rat osteoblasts were examined for induction of clonal growth of cultured rat bone marrow cells. Untreated cells constitutively secreted CSA, which increased with PTH and PTHrP treatment. The colonies formed were principally comprised of macrophages, and preincubation of CM with antiserum to murine macrophage colony-stimulating factor (M-CSF) neutralized most of the CSA, suggesting that the osteoblast-derived CSA was predominantly due to M-CSF. PTHrP treatment upregulated steady-state M-CSF mRNA levels. To investigate a paracrine role for M-CSF in bone we examined bone tissue and cells for the M-CSF receptor c-fms using immunohistochemical techniques and demonstrated staining of mature osteoclasts both in situ and after isolation. We conclude that M-CSF is responsible for the majority of the CSA released by PTH- and PTHrP-treated rat osteoblasts. In addition we identified CSF-1 receptor expression in mature osteoclasts. These data suggest that M-CSF is a mediator of osteoblast-osteoclast interaction in PTH- and PTHrP-induced bone resorption.  相似文献   

3.
Although the hematopoietic origin of the osteoclast is generally accepted, the precise phenotype of the progenitor and the regulation of its differentiation are unclear. This study compares proliferation and differentiation of progenitors in response to macrophage colony stimulating factor (M-CSF) and granulocyte macrophage colony stimulating factor (GM-CSF). Nonadherent progenitor cells from murine long-term bone marrow cultures (LTBMC) (as a source of osteoclast progenitors) demonstrated a significant proliferative response to M-CSF. In addition, M-CSF increased the number of multinucleated cells, only a small percent of which (14-16%) were tartrate-resistant, acid phosphatase (TRAP)-positive. In contrast, cells cultured with GM-CSF generated more TRAP-positive multinucleated cells even at concentrations less stimulatory of proliferation than M-CSF. The osteoclast phenotype of these multinucleated cells was also assessed by ultrastructural characterization of ruffled borders in association with bone fragments. The bone-active hormone 1,25-dihydroxyvitamin D3 inhibited the proliferation of this subset of progenitor cells in the presence of M-CSF or GM-CSF. All of these results show effects on progenitors in the absence of the stromal cell microenvironment in this system. These results provide evidence for a divergence in the biological responsiveness of osteoclast progenitor cells to M-CSF compared with GM-CSF; they support the notion that M-CSF has a "priming" effect on osteoclast progenitors whose subsequent differentiation to osteoclastic multinucleated cells is promoted by GM-CSF.  相似文献   

4.
Osteoclasts are multinucleated cells of hemopoietic origin that are responsible for bone resorption during physiological bone remodeling and in a variety of bone diseases. Osteoclast development requires direct heterotypic cell-cell interactions of the hemopoietic osteoclast precursors with the neighboring osteoblast/stromal cells. However, the molecular mechanisms underlying these heterotypic interactions are poorly understood. We isolated cadherin-6 isoform, denoted cadherin-6/2 from a cDNA library of human osteoclast-like cells. The isolated cadherin-6/2 is 3,423 bp in size consisting of an open reading frame of 2,115 bp, which encodes 705 amino acids. This isoform lacks 85 amino acids between positions 333 and 418 and contains 9 different amino acids in the extracellular domain compared with the previously described cadherin-6. The human osteoclast-like cells also expressed another isoform denoted cadherin-6/1 together with the cadherin-6. Introduction of cadherin-6/2 into L-cells that showed no cell-cell contact caused evident morphological changes accompanied with tight cell-cell association, indicating the cadherin-6/2 we isolated here is functional. Moreover, expression of dominant-negative or antisense cadherin-6/2 construct in bone marrow-derived mouse stromal ST2 cells, which express only cadherin-6/2, markedly impaired their ability to support osteoclast formation in a mouse coculture model of osteoclastogenesis. Our results suggest that cadherin-6 may be a contributory molecule to the heterotypic interactions between the hemopoietic osteoclast cell lineage and osteoblast/bone marrow stromal cells required for the osteoclast differentiation. Since both osteoclasts and osteoblasts/bone marrow stromal cells are the primary cells controlling physiological bone remodeling, expression of cadherin-6 isoforms in these two cell types of different origin suggests a critical role of these molecules in the relationship of osteoclast precursors and cells of osteoblastic lineage within the bone microenvironment.  相似文献   

5.
Mononuclear precursors of the human osteoclast have been identified in both bone marrow and the circulation in man, but osteoclast membership of the mononuclear phagocyte system (MPS) and its precise cellular ontogeny remain controversial. We isolated human hematopoietic marrow cells, blood monocytes, and peritoneal macrophages and incubated each of these cell populations with UMR106 osteoblast-like cells on glass coverslips and dentine slices in both the presence and absence of 1,25 dihydroxyvitamin D3 (1,25(OH)2D3), macrophage-colony stimulating factor (M-CSF), and dexamethasone. Cells isolated from peripheral blood and peritoneal dialysis fluid were positive only for monocyte/macrophage markers (CD11a, CD11b, CD14, and HLA-DR) and negative for osteoclast markers [tartrate-resistant acid phosphatase (TRAP), vitronectin reception (VNR), and calcitonin (CT) receptors and did not form resorption pits on dentine slices after 24 hours in culture. Similarly marrow cells did not form resorption pits on dentine slices after 24 hours in culture. However, after 14 days in co-culture with UMR106 cells, in the presence of 1,25(OH)2D3 and M-CSF, numerous TRAP, CT receptor, and VNR-positive multinucleated cells capable of extensive lacunar resorption were formed in co-cultures of all these preparations. The presence of 1,25 (OH)2D3, M-CSF, and UMR106 were absolute requirements for osteoclast differentiation. It is concluded that precursor cells capable of osteoclast differentiation are present in the marrow compartment, the monocyte fraction of peripheral blood, and in the macrophage compartment of extraskeletal tissues and that these cells are capable of differentiating into mature functional osteoclasts. These findings argue in favor of osteoclast membership of the human MPS.  相似文献   

6.
Interferon-gamma (IFN-gamma) has been shown to inhibit interleukin-1 (IL-1) and tumor necrosis factor alpha (TNF-alpha) stimulated bone resorption by strongly stimulating nitric oxide (NO) synthesis. Here we studied the mechanisms underlying this inhibition. Osteoclasts were generated in 10-day cocultures of mouse osteoblasts and bone marrow cells and the effect of cytokine-induced NO on osteoclast formation and activity was determined. Stimulation of the cocultures with IL-1 beta, TNF-alpha and IFN-gamma markedly enhanced NO production by 50- to 70-fold, and this was found to be derived predominantly from the osteoblast cell layer. When high levels of NO were induced by cytokines during early stages of the cocultures, osteoclast formation was virtually abolished and bone resorption markedly inhibited. Cytokine stimulation during the latter stages of coculture also resulted in inhibition of bone resorption, but here the effects were mainly due to an inhibitory effect on osteoclast activity. At all stages, however, the inhibitory effects of cytokines on osteoclast formation and activity were blocked by the NO-synthase inhibitor L-NMMA. Further investigations suggested that the NO-mediated inhibition of osteoclast formation was due in part to apoptosis of osteoclast progenitors. Cytokine stimulation during the early stage of the culture caused a large increase in apoptosis of bone marrow cells, and these effects were blocked by L-NMMA and enhanced by NO donors. We found no evidence of apoptosis in osteoclasts exposed to high levels of cytokine-induced NO at any stage in the culture, however, or of apoptosis affecting mature osteoclasts exposed to high levels of NO, suggesting that immature cells in the bone marrow compartment are most sensitive to NO-induced apoptosis. In summary, these studies identify NO as a potentially important osteoblast-osteoclast coupling factor which has potent inhibitory effects on bone resorption. These actions, in turn, are mediated by inhibition of osteoclast formation probably due to NO-induced apoptosis of osteoclast progenitors and by inhibition of the resorptive activity of mature osteoclasts.  相似文献   

7.
Previous studies have shown that 1,25-dihydroxyvitamin D [1,25(OH)2D] plays important roles in the formation of osteoclasts through its actions on osteoblastic cells. We have generated mice lacking vitamin D receptor (VDR) by gene targeting (VDR-/-). These mice had tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts, and exhibited similar levels of parameters for bone resorption to those in wild type mice. The present studies were undertaken to clarify whether effects of 1,25(OH)2D on osteoclast formation require VDR in osteoblasts, and to examine mechanisms of the formation of osteoclasts without VDR-mediated actions using VDR-/- mice. When wild-type calvarial osteoblasts and spleen cells were co-cultured with 1,25(OH)2D, TRAP-positive osteoclasts were formed regardless of the genotypes of spleen cells. In contrast, when osteoblasts from VDR-/- mice were co-cultured, no osteoclasts could be formed even with wild-type spleen cells. Parathyroid hormone and interleukin-1alpha stimulated osteoclast formation by co-cultures from VDR-/- mice, and the generated osteoclasts showed resorbing activity. These results demonstrate that VDR-mediated actions of 1,25(OH)2D in osteoblasts are essential for osteoclast formation by 1,25(OH)2D, and that functionally intact osteoclasts can be formed without 1,25(OH)2D actions under stimulations by other agents. It is suggested that osteoclastic bone resorption can be maintained without 1,25(OH)2D actions by other stimulatory agents.  相似文献   

8.
The morphogenesis and remodeling of bone depends on the integrated activity of osteoblasts that form bone and osteoclasts that resorb bone. We previously reported the isolation of a new cytokine termed osteoclastogenesis inhibitory factor, OCIF, which specifically inhibits osteoclast development. Here we report the cloning of a complementary DNA of human OCIF. OCIF is identical to osteoprotegerin (OPG), a soluble member of the tumor-necrosis factor receptor family that inhibits osteoclastogenesis. Recombinant human OPG/OCIF specifically acts on bone tissues and increases bone mineral density and bone volume associated with a decrease of active osteoclast number in normal rats. Osteoblasts or bone marrow-derived stromal cells support osteoclastogenesis through cell-to-cell interactions. A single class of high affinity binding sites for OPG/OCIF appears on a mouse stromal cell line, ST2, in response to 1,25-dihydroxyvitamin D3. An anti-OPG/OCIF antibody that blocks the binding abolishes the biological activity of OPG/OCIF. When the sites are blocked with OPG/OCIF, ST2 cells fail to support osteoclastogenesis. These results suggest that the sites are involved in cell-to-cell signaling between stromal cells and osteoclast progenitors and that OPG/OCIF inhibits osteoclastogenesis by interrupting the signaling through the sites.  相似文献   

9.
Mice homozygous for the osteopetrosis (op) mutation are characterized by defective differentiation of osteoclasts, monocytes, and tissue macrophages due to a lack of functional macrophage colony-stimulating factor (M-CSF/CSF-1) activity. In young (4-6 week-old) op/op mice, the bone marrow cavities were filled with spongious bone. In aged (50-72 week-old) op/op mice, the bone marrow cavities were markedly reconstructed and marrow hematopoiesis was expanded. Numbers of osteoclasts and bone marrow macrophages in aged op/op mice were increased but most of the osteoclasts were mononuclear cells and showed poorly developed ruffled borders. Lysosomes of bone marrow macrophages were laden with abundant crystalloid materials in aged op/op mice and aged littermate mice. However, such macrophages were not observed in young op/op mice nor in young littermates. In contrast to the marked increase in numbers of osteoclasts and macrophages in the bone marrow, the number of Kupffer cells in the liver did not increase in aged op/op mice. Kupffer cells in aged op/op mice did not show ultrastructural maturation with aging and contained a few crystalloid structures. M-CSF administration to aged op/op mice induced numerical increases in Kupffer cells and lysosomes in Kupffer cells, disappearance of crystalloid structures in lysosomes of Kupffer cells, and the development of ruffled border in osteoclasts. These findings indicate that M-CSF-independent mechanisms for macrophage and osteoclast development in aged op/op mice are restricted to bone marrow. M-CSF plays important roles in the differentiation of macrophage and osteoclast and the production and function of lysosomes.  相似文献   

10.
Bone-resorbing multinucleated cells were efficiently formed in primary culture of cells isolated from synovial tissues of patients with rheumatoid arthritis in 2-3 weeks in the presence of 1,25(OH)2vitaminD3 without any additional stromal cells, and that formation was further facilitated by macrophage-colony stimulating factor. Furthermore, we show that osteoclast-like cells are formed in co-culture of peripheral blood mononuclear cells and rheumatoid synovial fibroblasts obtained by continued sub-cultures. The multinucleated cells showed all the phenotypical and functional characteristics of osteoclasts including the expression of tartrate resistant acid phosphatase, vitronectin receptors, receptors for human calcitonin and the ability to resorb bone. These results indicate that synovial macrophages are capable of differentiating into osteoclasts in the presence of rheumatoid synovial fibroblasts which can support differentiation of monocytes/ macrophages, implicating that osteoclasts generated within the synovial membrane are probably involved in bone destruction in rheumatoid arthritis.  相似文献   

11.
Wortmannin (WT) and 17beta-hydroxywortmannin (HWT), which are inhibitors of phosphatidylinositol-3(OH)-kinase (PI3K), have been shown previously to inhibit bone resorption in vitro and in vivo, possibly by interfering with formation of the osteoclast ruffled border. Since migration of osteoclasts also plays an important role in the process of bone resorption, we investigated the effects of these inhibitors on osteoclast morphology and motility. Both HWT and WT caused a sustained decrease in the planar area of osteoclasts in vitro (half maximal effect at 25 and 165 nM, respectively), with the effect of HWT on cell area more readily reversible than WT. These agents also caused accumulation of intracellular vesicles. Time-lapse video microscopy was used to record the migration of osteoclasts in response to macrophage colony-stimulating factor (M-CSF) or vehicle, flowing passively from a micropipette positioned 200-400 microm from the cell. M-CSF caused directed migration of osteoclasts, indicating chemotaxis (over 3 h osteoclasts migrated 96 +/- 14 microm in response to M-CSF vs. 11 +/- 2 microm in control experiments). Both WT (100 or 500 nM) and LY294002 (100 microM), a specific PI3K inhibitor structurally unrelated to WT, significantly inhibited osteoclast chemotaxis in response to M-CSF. Taken together, these effects of WT, HWT, and LY294002 are consistent with an important role for PI3K in regulating cytoskeletal function in osteoclasts. The inhibitory effects of WT and HWT on bone resorption may be due, in part, to impairment of osteoclast motility.  相似文献   

12.
TRANCE (tumor necrosis factor-related activation-induced cytokine) is a recently described member of the tumor necrosis factor superfamily that stimulates dendritic cell survival and has also been found to induce osteoclastic differentiation from hemopoietic precursors. However, its effects on mature osteoclasts have not been defined. It has long been recognized that stimulation of osteoclasts by agents such as parathyroid hormone (PTH) occurs through a hormonal interaction with osteoblastic cells, which are thereby induced to activate osteoclasts. To determine whether TRANCE accounts for this activity, we tested its effects on mature osteoclasts. TRANCE rapidly induced a dramatic change in osteoclast motility and spreading and inhibited apoptosis. In populations of osteoclasts that were unresponsive to PTH, TRANCE caused activation of bone resorption equivalent to that induced by PTH in the presence of osteoblastic cells. Moreover, osteoblast-mediated stimulation of bone resorption was abrogated by soluble TRANCE receptor and by the soluble decoy receptor osteoprotegerin (OPG), and stimulation of isolated osteoclasts by TRANCE was neutralized by OPG. Thus, TRANCE expression by osteoblasts appears to be both necessary and sufficient for hormone-mediated activation of mature osteoclasts, and TRANCE-R is likely to be a receptor for signal transduction for activation of the osteoclast and its survival.  相似文献   

13.
The tumour-necrosis-factor-family molecule osteoprotegerin ligand (OPGL; also known as TRANCE, RANKL and ODF) has been identified as a potential osteoclast differentiation factor and regulator of interactions between T cells and dendritic cells in vitro. Mice with a disrupted opgl gene show severe osteopetrosis and a defect in tooth eruption, and completely lack osteoclasts as a result of an inability of osteoblasts to support osteoclastogenesis. Although dendritic cells appear normal, opgl-deficient mice exhibit defects in early differentiation of T and B lymphocytes. Surprisingly, opgl-deficient mice lack all lymph nodes but have normal splenic structure and Peyer's patches. Thus OPGL is a new regulator of lymph-node organogenesis and lymphocyte development and is an essential osteoclast differentiation factor in vivo.  相似文献   

14.
Osteoclast development requires cell-to-cell contact between hematopoietic osteoclast progenitors and bone marrow stromal/osteoblastic support cells. Based on this, we hypothesized that osteopontin, an adhesion protein produced by osteoclasts and osteoblasts, plays a role in osteoclastogenesis. Using in situ hybridization, we demonstrate that cells expressing the osteopontin messenger RNA (mRNA) appear after 3 days of culturing murine bone marrow cells. The number of these cells increases thereafter, reaching a peak on day 5. In the same cultures, cells expressing alkaline phosphatase (AP) or tartrate resistant acid phosphatase (TRAP), phenotypic markers for osteoblastic and osteoclast-like cells, respectively, appeared subsequent to the appearance of the osteopontin-positive cells. By means of a combination of in situ hybridization and histostaining, it was shown that the osteopontin mRNA was localized in 30-50% of the AP-positive or the TRAP-positive, as well as in nonspecific esterase (NSE)-positive, cells. The number of cells expressing both the osteopontin mRNA and either one of the three phenotypic markers was significantly increased in bone marrow cultures from estrogen-deficient mice, as compared with controls. Conversely, the number of all three populations of double positive cells was decreased in cultures treated with a specific antimouse rabbit osteopontin antibody or an RGD peptide. These findings indicate that osteopontin is expressed during the early stages of the differentiation of osteoclast and osteoblast progenitors in the bone marrow and that its cell adhesion properties are required for osteoclastogenesis.  相似文献   

15.
Bone remodeling depends on the spatial and temporal coupling of bone formation by osteoblasts and bone resorption by osteoclasts; however, the molecular basis of these inductive interactions is unknown. We have previously shown that osteoblastic overexpression of TGF-beta2 in transgenic mice deregulates bone remodeling and leads to an age-dependent loss of bone mass that resembles high-turnover osteoporosis in humans. This phenotype implicates TGF-beta2 as a physiological regulator of bone remodeling and raises the question of how this single secreted factor regulates the functions of osteoblasts and osteoclasts and coordinates their opposing activities in vivo. To gain insight into the physiological role of TGF-beta in bone remodeling, we have now characterized the responses of osteoblasts to TGF-beta in these transgenic mice. We took advantage of the ability of alendronate to specifically inhibit bone resorption, the lack of osteoclast activity in c-fos-/- mice, and a new transgenic mouse line that expresses a dominant-negative form of the type II TGF-beta receptor in osteoblasts. Our results show that TGF-beta directly increases the steady-state rate of osteoblastic differentiation from osteoprogenitor cell to terminally differentiated osteocyte and thereby increases the final density of osteocytes embedded within bone matrix. Mice overexpressing TGF-beta2 also have increased rates of bone matrix formation; however, this activity does not result from a direct effect of TGF-beta on osteoblasts, but is more likely a homeostatic response to the increase in bone resorption caused by TGF-beta. Lastly, we find that osteoclastic activity contributes to the TGF-beta-induced increase in osteoblast differentiation at sites of bone resorption. These results suggest that TGF-beta is a physiological regulator of osteoblast differentiation and acts as a central component of the coupling of bone formation to resorption during bone remodeling.  相似文献   

16.
17.
Osteoclasts are hematopoietic cells essential for bone resorption. To study the derivation of these interesting cells, we developed a stepwise culture system where stromal cells promote embryonic stem (ES) cells to differentiate into mature osteoclasts. Three phases to this differentiation process include (1) induction of hematopoiesis, along with the generation of osteoclast precursors, (2) expansion of these precursors, and (3) terminal differentiation into mature osteoclasts in the presence of 1alpha,25-dihydroxyvitamine D3 . Although the transition of ES cells to the hematopoietic lineage was not blocked by an antibody to c-fms, later phases were dependent on a signaling through this transmembrane receptor as indicated by the finding that anti-c-fms treatment of cells in the second and third phases reduced the number of osteoclasts produced by 75% and more than 99%, respectively. Blockade of signaling through another tyrosine kinase-type receptor, c-kit, did not affect any stages of osteoclastogenesis, although generation of other hemopoietic lineages was reduced to less than 10% of untreated. When small numbers of ES cells were directly cultured under conditions that promote osteoclast differentiation, tartrate-resistant acid phosphatase-positive multinucleated cells were observed at the edge but not inside of colonies. This suggests that some types of cell-cell interactions may inhibit development of mature osteoclasts. The culture system developed here provides an important tool for osteoclast biology.  相似文献   

18.
Aseptic loosening of implant components is a common and important complication of both cemented and uncemented prosthetic joint replacements. Wear particles derived from organic polymer and metal implant biomaterials are commonly found within macrophages and macrophage polykaryons in the fibrous membrane between loose implant components and the host bone undergoing resorption. In order to determine whether biomaterial particle-containing, foreign-body macrophages may contribute to periprosthetic bone resorption, we cultured murine monocytes that had phagocytosed particles of biomaterials commonly employed in bone implant surgery [polymethylmethacrylate (PMMA), ultra-high molecular weight polyethylene (PE), titanium and chromium-cobalt] on bone slices and glass coverslips with UMR 106 osteoblast-like stromal cells in the presence of 1,25-dihydroxy-vitamin D3. Under these conditions, all biomaterial particle-containing, foreign-body macrophages differentiated into osteoclastic cells, i.e. tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells capable of extensive lacunar bone resorption. This study shows that particle phagocytosis by macrophages does not abrogate the ability of these cells to undergo osteoclast differentiation. These findings emphasise the importance of the foreign-body macrophage response to biomaterial wear particles in the pathogenesis of aseptic loosening.  相似文献   

19.
Subclones of the human osteosarcoma cell line SaOS-2 were established by transfecting with an expression vector containing the human PTH/PTH-related protein (PTHrP) receptor, and their abilities to support osteoclast-like multinucleated cell (OCL) formation were examined in coculture with mouse or human hemopoietic cells. Of four subclones examined, SaOS-2/4 and SaOS-4/3 bound high levels of [125I]-PTH and produced a significant amount of cAMP in response to PTH. OCLs were formed in response to PTH in the cocultures of mouse bone marrow cells with either SaOS-2/4 cells or SaOS-4/3 cells. Human OCLs were also formed in response to PTH in the coculture of SaOS-4/3 cells and human peripheral blood mononuclear cells. Adding dexamethasone together with PTH greatly enhanced PTH-induced human OCL formation. Like mouse OCLs, human OCLs formed in response to PTH were tartrate-resistant acid phosphatase positive, expressed abundant calcitonin receptors and vitronectin receptors, and formed resorption pits on dentine slices. Other osteotropic factors such as 1alpha,25-dihydroxyvitamin D3, prostaglandin E2, and interleukin 6 plus soluble interleukin 6 receptors failed to induce mouse and human OCLs in cocultures with SaOS-4/3 cells. Both mouse and human OCL formation supported by SaOS-4/3 cells were inhibited by either adding an antibody against macrophage-colony stimulating factor or adding granulocyte/macrophage-colony stimulating factor. Thus, it is likely that human and mouse OCL formation supported by SaOS-4/3 cells are similarly regulated. These results indicate that the target cells of PTH for inducing osteoclast formation are osteoblast/stromal cells but not osteoclast progenitor cells in the coculture. This coculture model will be useful for investigating the abnormalities ofosteoclast differentiation and function in human metabolic bone diseases.  相似文献   

20.
The brittle, fracture-prone bones of an osteoporotic postmenopausal woman are the products of an excessive uncompensated resorption of trabecular bone by osteoclasts. Osteoporosis is currently treated with the osteoclast suppressors calcitonin, bisphosphonates, or oestrogen, which stop further bone resorption without stimulating new bone growth. Here, James Whitfield and Paul Morley review the growing evidence that small adenylate cyclase-stimulating fragments of the parathyroid hormone are promising therapeutic agents for osteoporosis that potently stimulate osteoblasts to make mechanically strong or supranormally strong bone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号