首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 82 毫秒
1.
基于混合遗传算法求解非线性方程组   总被引:5,自引:0,他引:5  
将非线性方程组的求解问题转化为函数优化问题,且综合考虑了拟牛顿法和遗传算法各自的优点,提出了一种用于求解非线性方程组的混合遗传算法。该混合算法充分发挥了拟牛顿法的局部搜索、收敛速度快和遗传算法的群体搜索、全局收敛的优点。为了证明该混合遗传算法的有效性,选择了几个典型的非线性方程组,从实验计算结果、收敛可靠性指标对比不同算法进行分析。数值模拟实验表明,该混合遗传算法具有很高的精确性和收敛性,是求解非线性方程组的一种有效算法。  相似文献   

2.
基于混合遗传算法求解非线性方程组   总被引:3,自引:0,他引:3  
将非线性方程组的求解问题转化为函数优化问题,且综合考虑了拟牛顿法和遗传算法各自的优点,提出了一种用于求解非线性方程组的混合遗传算法。该混合算法充分发挥了拟牛顿法的局部搜索、收敛速度快和遗传算法的群体搜索、全局收敛的优点。为了证明该混合遗传算法的有效性,选择了几个典型的非线性方程组,从实验计算结果、收敛可靠性指标对比不同算法进行分析。数值模拟实验表明,该混合遗传算法具有很高的精确性和收敛性,是求解非线性方程组的一种有效算法。  相似文献   

3.
研究非线性方程组的求解问题,提高有效性。针对非线性方程数与变量数一致的非线性方程组问题,当方程组是一些强非线性方程组时,传统方法易导致失败,有效率低。为了提高求解强非线性方程组的求解效率,提出一种蚁群算法的求解方法。首先将方程组问题转化为函数优化问题,然后用全局搜索速度快的蚁群算法对函数进行求解,找到最优解,最后通过具体实例进行仿真研究,结果表明蚁群算法的有效性。  相似文献   

4.
基于遗传算法的非线性方程组求解   总被引:2,自引:1,他引:1  
曹薇  张乃洲 《计算机时代》2009,(9):26-28,31
针对目前求解非线性方程组所采用的牛顿法及其变形算法存在的运算量大、求解速度慢的问题,提出了一个求解非线性方程组近似解的通用遗传算法。该算法主要采用求解目标函数极小值的思想,并结合遗传算法并行搜索的特点,通过选择和设置适当的父体选择策略、杂交算子、变异算子等参数,使算法取得了较高的收敛速度和精度。实验结果表明,该方法明显优于传统方法,并具有运算速度快、精度高、通用性好的特点。  相似文献   

5.
针对非线性方程组的求解在工程上具有广泛的实际意义,经典的数值求解方法存在其收敛性依赖于初值而实际计算中初值难确定的问题,将复杂非线性方程组的求解问题转化为函数优化问题,引入竞选优化算法进行求解。同时竞选优化算法求解时无需关心方程组的具体形式,可方便求解几何约束问题。通过对典型非线性测试方程组和几何约束问题实例的求解,结果表明了竞选优化算法具有较高的精确性和收敛性,是应用于非线性方程组求解的一种可行和有效的算法。  相似文献   

6.
求解非线性方程组的社会认知算法   总被引:1,自引:4,他引:1       下载免费PDF全文
将非线性方程组的求解问题转化为函数优化问题,应用一种新的智能优化算法——社会认知算法求解此优化问题,实验结果表明了社会认知算法在求解非线性方程组时的可行性和有效性。  相似文献   

7.
萤火虫算法(FA)是一种基于群体搜索的启发式随机优化算法,其模拟自然界中萤火虫利用发光的生物学特性而表现出来的社会性行为。针对萤火虫算法存在着收敛速度慢、易陷入局部最优、求解精度低等不足,利用单纯形法局部搜索速度快和萤火虫算法全局寻优的特点,提出一种基于单纯形法的改进型萤火虫算法(SMFA)。通过对标准测试函数以及非线性方程组的实验仿真,并与其他算法进行的对比分析表明,改进后的算法在函数优化方面有较强的优势,在一定程度上有效地避免了陷入局部最优,提高了搜索的精度。  相似文献   

8.
基于微粒群优化的非线性方程组求解研究   总被引:4,自引:2,他引:4  
在科学技术和工程应用中经常遇到求解非线性方程组的问题。提出了一种求解非线性方程组的通用数值方法。将非线性方程组的求解问题转化为函数优化问题,通过微粒群优化对其进行求解,最终得到非线性方程组较高精度的解。一系列测试实例显示了该算法在求解非线性方程组时具有简单性、高效性和普适性。  相似文献   

9.
非线性方程组的求解是优化领域的一个重要研究课题.近年来,利用智能优化算法求解非线性方程组已成为一个重要方向.首先介绍非线性方程组的定义;其次,根据智能优化算法求解非线性方程组问题的基本框架,从转化方法和智能优化算法两方面入手,对求解非线性方程组的算法的研究进展进行归纳总结;再次,对非线性方程组的测试函数及评价指标进行描述,对比了5个具有代表性算法的性能,分析了目前利用智能优化算法求解非线性方程组亟待解决的问题;最后,指出值得进一步研究的方向.  相似文献   

10.
为了更有效地求解复杂的非线性方程组,引入了人工蜂群算法.考虑到人工蜂群算法后期表现出的收敛速度慢、容易陷入局部最优值的缺点,提出了一种新的人工蜂群优化算法( IABC).新算法对工蜂进行邻域搜索产生新解的方法进行了改进,引入了尝试次数,修改了向新食物源靠拢的递进步长,加快了原有算法的收敛速度.试验结果表明,改进算法较好地平衡了全局搜索能力和局部搜索能力,是一种求解非线性方程组的高效算法.  相似文献   

11.
基于极大熵差分进化混合算法求解非线性方程组*   总被引:2,自引:1,他引:2  
针对非线性方程组,给出了一种新的算法——极大熵差分进化混合算法。首先把非线性方程组转换为一个不可微优化问题;然后用一个称之为凝聚函数的光滑函数直接代替不可微的极大值函数,从而可把非线性方程组的求解转换为无约束优化问题,利用差分进化算法对其进行求解。计算结果表明,该算法在求解的准确性和有效性均优于其他算法。  相似文献   

12.
针对差分进化算法进化后期收敛缓慢和稳定性不强的缺陷,将BFGS算法插入差分进化算法当中,提出了一种BFGS差分进化算法,用来求解非线性方程组。通过5个非线性方程组和一个工程实例的实验,说明:算法收敛精度较高、收敛速度较快、鲁棒性强、收敛成功率高,是一种较好的解决非线性方程组的方法。  相似文献   

13.
Consider the following separable nonlinear delay differential equation
, where we assume that, there is a strictly monotone increasing function f(x) on (−∞, +∞) such that
In this paper, to the above separable nonlinear delay differential equation, we establish conditions of global asymptotic stability for the zero solution. In particular, for a special wide class of f(x) which contains a case of f(x) = ex−1, we give more explicit conditions. Applying these, we offer conditions of global asymptotic stability for solutions of nonautonomous logistic equations with delays.  相似文献   

14.
提出了一种非线性约束优化问题改进的自适应差分进化算法。该算法对差分进化算法中固定的加权因子和交叉概率因子进行改进;定义了约束违反度函数,将约束优化问题转化为无约束双目标优化问题,在每次迭代中按照约束违反度的大小保留一部分性能较优不可行粒子,有效地维持了种群的多样性;为了扩大粒子的搜索范围引入变异算子。数值实验表明,新算法具有较快的收敛速度和较好的全局寻优能力。  相似文献   

15.
求解高次实复系数代数方程的根,提出了一种改进的差分进化算法,计算种群中每个个体的适应度并排序,利用二分之一规则选取个体,并引入自适应差分变异算子和进化策略重组算子.对5个高次代数方程求根问题进行了数值计算,结果表明,该算法能求解任意次数的实复系数代数方程的全部根,而且求解精度高,收敛速度快,是求解代数方程根的一种有效算法.  相似文献   

16.
折衷的差分演化算法在有约束优化中的应用   总被引:1,自引:0,他引:1       下载免费PDF全文
设计了一种求解有约束优化问题的新方案,该方案以一种折衷的差分演化算法为基础,应用两个简单的基于可行解的规则引导算法向可行域搜索,应用周期模式处理边界约束。并用该方案优化了一个标准测试集上的全部函数,试验结果表明,与同类方法相比而言,该方案在收敛速度和稳定性两方面表现出较强的竞争力。  相似文献   

17.
针对0-1非线性规划问题的特点,提出了一种适合于求解0-1非线性规划问题的改进差分进化算法。这个算法把差分进化算法和罚函数方法有机结合起来,在变异操作中加入0-1取整运算,在交叉操作中使用了指数递增交叉概率因子以提高算法的全局搜索能力和收敛速率。用8个例子进行了实验研究,结果表明这个改进的差分进化算法在收敛性、精度、鲁棒性强方面都比较好。  相似文献   

18.
针对细菌觅食算法在优化过程中步长一致、速度较慢的缺陷,赋予细菌对环境感知的能力,并利用灵敏度的概念来调节群游步长,提高收敛速度;将差分进化的思想引入趋化算子,对趋化过程中的细菌位置进行修正,改善群游过程中部分维的退化现象,增加收敛的精度。采用高维典型测试函数对算法进行测试,新算法明显提高了搜索速度和精度,改造后适用于多维、约束等实际工程问题的优化。  相似文献   

19.
近年来运用进化算法(EAs)解决多目标优化问题(Multi-objective Optimization Problems MOPs)引起了各国学者们的关注。作为一种基于种群的优化方法,EAs提供了一种在一次运行后得到一组优化的解的方法。差分进化(DE)算法是EA的一个分支,最开始是用来解决连续函数空间的问题。提出了一种改进的基于差分进化的多目标进化算法(CDE),并且将它与另外两个经典的多目标进化算法(MOEAs)NSGA-II和SPEA2进行了对比实验。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号