首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reduced Sensitivity RDX (RS‐RDX) has received a lot of attention and interest from the explosive community in the recent years. There are several producers of RS‐RDX, most of them using a direct nitration (Woolwich process) for the RDX synthesis, while Chemring Nobel uses the Bachmann process. The processes for obtaining the RS properties probably differ between the various producers. Chemring Nobel has also developed an HMX quality that shows Reduced Sensitivity (RS‐HMX) of different particle size distributions. The shock sensitivity is at the same level as for RS‐RDX in comparable compositions. Reduced shock sensitivity has been obtained for RS‐RDX and Reduced Sensitivity (RS‐HMX) in both pressable and cast‐cured compositions. By using a pressable composition, it is possible to get the results from a BICT gap test faster than from a cast‐cured composition that has to go through a curing process. Chemring Nobel in cooperation with FFI have performed an extensive accelerated ageing testing of RS‐RDX produced by the Bachmann process. The samples have been aged at 60 and 70 °C and the shock sensitivity tested by two different gap tests. The results demonstrate that the Chemring Nobel RS‐RDX retain the insensitivity towards shock during ageing and show no degradation at all. Accelerated ageing testing of RS‐HMX has also been performed and shows no degradation in the shock sensitivity.  相似文献   

2.
An interlaboratory comparison of seven lots of commercially available RDX was conducted to determine what properties of the nitramine particles can be used to assess whether the RDX has relatively high or relatively low sensitivity. The materials chosen for the study were selected to give a range of HMX content, manufacturing process and reported shock sensitivity. The results of two different shock sensitivity tests conducted on a PBX made with the RDX lots in the study showed that there are measurable differences in the shock sensitivity of the PBXs, but the impact sensitivity for all of the lots is essentially the same. Impact sensitivity is not a good predictor of shock sensitivity for these types of RDX. Although most RDX that exhibits RS has low HMX content, that characteristic alone is not sufficient to guarantee low sensitivity. A range of additional analytical chemistry tests were conducted on the material; two of these (HPLC and DSC) are discussed within.  相似文献   

3.
TNO Prins Maurits Laboratory has actively followed and contributed to the research on the development of insensitive munitions (IM). One of the initial research topics at TNO focused on the improvement of the shape of RDX crystals and its relation to the shock sensitivity. The variation of crystal shape has been studied by crystallization from different solvents and/or by post‐treatment of the crystals. The role of the mean particle size on shock sensitivity was also included in these analyses. The decrease in shock sensitivity is even more pronounced when controlling the internal quality of crystals. In the meantime research has shifted to other energetic materials as well – in particular HMX and CL‐20 – in this way revealing step by step the important physicochemical parameters which play a role in determining the shock sensitivity of formulations containing these types of nitramines. Various characterization techniques, to determine the internal and external quality of crystals will be discussed, and their relation to shock sensitivity in PBXs will be shown. Two different grades of I‐RDX have been subjected to different characterization tests. The objective is to gain more understanding about which of the physicochemical parameters enables one to discriminate between a reduced sensitivity RDX and normal RDX.  相似文献   

4.
The shock sensitivity of RDX is of major interest for the development of insensitive munitions. Previous research has implied that internal defects that form within RDX crystals have a strong sensitising effect, increasing the probability of shock initiation. During the NATO Reduced sensitivity RDX Round Robin (R4) program the number of internal defects within RDX crystals of differing qualities were assessed by optical microscopy and a scoring system. The results suggested that RDX crystals with many internal defects were more sensitive. Studies investigating the mechanical properties of bulk RDX have shown that lots consisting of poorer crystals are weaker. This study investigates the mechanical properties of individual crystals from different RDX lots using nano‐indentation. It is shown that crystals with many internal defects have reduced modulus of elasticity, stiffness and prone to greater deformation under applied load. The results also show a correlation between these parameters and previously reported shock sensitivity data.  相似文献   

5.
The initiation sensitivity of cyclotrimethylenetrinitramine (RDX) was investigated as a function of crystal size. For this study, RDX powders with mean crystal sizes of ca. 200 and 500 nm were prepared by rapid expansion of supercritical solutions (RESS) with carbon dioxide as the solvent. Initiation sensitivity testing to impact, sustained shock, and electrostatic discharge stimuli was performed on uncoated as well as wax‐coated specimens. The test data revealed that in a direct comparison to coarser grades the nanocrystalline RDX‐based samples were substantially less sensitive to shock and impact stimuli. Furthermore, the 500 nm RDX‐based specimens exhibited the lowest sensitivity values, an indication that minima in shock and impact sensitivities with respect to crystal size exist.  相似文献   

6.
Crystal morphology and shock sensitivity of a series of cyclotrimethylenetrinitramine (RDX) particles suspended from ethylene glycol were investigated. Flow rheology was employed to measure the rheological properties of the suspensions at constant temperature; it was observed that the stress‐shear rate and viscosity behavior of the suspensions were controlled by the particle morphology. The viscosity of the RDX suspensions changed with the roundness/smoothness of RDX crystals at all applied shear rates. The suspensions containing crystals with smoother morphology showed reduced viscosity. When the viscosity data was compared to the shock sensitivity results from the RS‐RDX Round Robin study, a good correlation was obtained. This study has validated the use of flow rheology to indicate the morphology and shock sensitivity of crystalline particles.  相似文献   

7.
Reduced sensitivity RDX (RS‐RDX) particles are now available from several manufacturers. But a clear understanding of this reduced sensitivity behavior is not yet available. RS‐RDX particles are usually employed in cast formulations to reduce their shock sensitivity. The use of RS‐RDX in pressed formulations is more recent and does not always give reduced sensitivity formulations.  相似文献   

8.
In recent years much interest has been generated in a quality of reduced sensitivity RDX (RS‐RDX), like I‐RDX® which, when incorporated in cast cure and even pressable plastic bonded explosives (PBX compositions), can confer reduced shock sensitivity as measured through gap test. At crystal level, lot of work has been done to try to determine which property or properties may explain the behaviour of the corresponding cast PBX composition. But up to now, and despite an international inter‐laboratory comparison (Round Robin) of seven lots of RDX from five different manufacturers conducted from 2003 to 2005, even if some techniques lead to interesting results, there is no dedicated specification to apply to RS‐RDX. This quality (I‐RDX®) has proved to retain its low sensitivity even after ageing, which does not seem to be the case for standard RDX produced by the Bachmann process (when re‐crystallized under I‐RDX conditions in order to obtain RS‐RDX). It has been shown that the higher sensitivity of RDX produced by the Bachmann process, or the evolution of sensitivity after ageing of RS‐RDX produced from Bachmann RDX may be linked to the presence of octogen (HMX) during the crystallization process. In order to check such hypothesis, low HMX content RDX produced by the Bachmann process has been prepared and evaluated in cast PBX composition (PBX N 109). Results of the characterization of such quality of RDX and its evaluation in cast PBX composition as well as ageing behaviour are presented and discussed; there are indications that removal of HMX from Bachmann RDX may lead to RS‐RDX, which retains its RS character even after ageing.  相似文献   

9.
Intragranular defects inside RDX/HMX were studied by optical microscopy with matching refractive (OMS), sink‐float method (SFM), and micro‐focus CT (μCT) techniques. OMS results revealed the phenomenon that RDX/HMX had more defects and cracks than RS‐RDX/RS‐HMX. μCT results indicated that RDX/HMX had more defects with larger volume than RS‐RDX/RS‐HMX. The gap test showed that critical shock pressure/gap thickness was 6.4 GPa/19.4 mm for PBX based on RDX, while they were 7.5 GPa/17.5 mm and 8.6 GPa/16.2 mm for PBX based on M‐RDX and RS‐RDX, respectively. Meanwhile, an analysis of the relationship between defects inside RDX/HMX crystal and shock sensitivity was made. Finally, the shock pressure response under impact loading was investigated by discrete element method.  相似文献   

10.
The shock sensitivities of plastic bonded explosives were studied with a thin flyer impact test by using two types of pressed RDX. The thin flyer, driven by an electrically exploding plasma, exerts a short‐duration, high‐pressure pulse to the samples to trigger a shock‐to‐detonation process. It was found that the duration and magnitude of the incident shock strongly influence the dominant mode of hot‐spot formation, promoting a fast pore collapsing mechanism while suppressing other slower shear or friction mechanisms, as proposed by Chakravarty et al. [1]. The pressed PBX based on reduced sensitivity RDX had higher shock threshold pressure, compared to the pressed PBX based on commercial RDX. The difference was observed even with a certain portion of external extragranular defects. It is postulated that the internal crystal defects are more efficient than the external porosity in terms of the rapid reaction of hot spots.  相似文献   

11.
An explosive composition, derived from AFX‐757, was systematically varied by using three different qualities of Class I RDX. The effect of internal defect structure of the RDX crystal on the shock sensitivity of a polymer bonded explosive is generally accepted (Doherty and Watt, 2008). Here the response to a mechanical non‐shock stimulus is studied using an explosion‐driven deformation test as well as the ballistic impact chamber. No correlation between RDX crystal quality and deformation sensitivity is observed. The DDT behavior (Deflagration to Detonation Transition) of the three plastic bonded explosives, although similar in composition, is distinct regarding the rate of diameter increase in the explosion‐driven deformation test. Recovered polymer bonded explosive from the explosion‐driven deformation test responds equally fast or slower in the ballistic impact chamber. Based on our experimental results the shear rate threshold as a single parameter describing mechanical sensitivity is challenged, and preference is given to the development of an ignition criterion based on inter‐granular sliding friction under the action of a normal pressure.  相似文献   

12.
In an attempt to further contribute to the characterization of explosive compositions, small scale Floret tests were performed using four RDX grades, differing in product quality. A Floret test provides a measure – by indentation of a copper block – of detonation spreading or the initiability and shock wave divergence and is applied in particular to explosives used in initiation trains. Both as‐received RDX and PBXs (based on the AFX‐757 composition, a hard target penetrator explosive) containing these RDX grades were tested in the Floret test set‐up. It was found that the Floret test method, when applied to granular, as‐received RDX, was not able to discriminate between the overall RDX product qualities on the basis of the resulting volume of the indentation in the copper block. For the Floret test data of the PBX samples, a division into two parts, where one of the RDX lots shows a lower dent volume compared to the other RDX lots tested. Based on the results presented in this paper with granular RDX and a PBX composition and earlier results with a different type of PBX (based on PBXN‐109, an insensitive high explosive used in a wide range of munitions), the Floret test could be developed into a screening test for shock sensitivity and product quality, without the need for complex and large volume casting of specific PBX compositions.  相似文献   

13.
With aims toward desensitizing RDX and TNT via molecular modification, mono- and trinitroso-derivatives of RDX and 3-amino-TNT were synthesized and subjected to sensitivity tests. Impact and shock sensitivity data show these compounds to be markedly desensitized. Explosive yield measurements indicate that the changes in power output due to these molecular modifications are minor.  相似文献   

14.
15.
Hydroxyl‐terminated polybutadiene (HTPB) based sheet explosives incorporating insensitive 1,3,5‐triamino‐2,4,6‐trinitrobenzene (TATB) as a part replacement of cyclotrimethylene trinitramine (RDX) have been prepared during this work. The effect of incorporation of TATB on physical, thermal, and sensitivity behavior as well as initiation by small and high caliber shaped charges has been determined. Composition containing 85% dioctyl phthalate (DOP) coated RDX and 15% HTPB binder was taken as control. The incorporation of 10–20% TATB at the cost of RDX led to a remarkable increase in density (1.43→1.49 g cm−3) and tensile strength (10→15 kg cm−2) compared to the control composition RDX/HTPB(85/15). RDX/TATB/HTPB based compositions were found less vulnerable to shock stimuli. Shock sensitivity was found to be of the order of 20.0–29.2 GPa as against 18.0 GPa for control composition whereas their energetics in terms of velocity of detonation (VOD) were altered marginally. Differential scanning calorimeter (DSC) and thermogravimetry (TG) studies brought out that compositions undergo major decomposition in the temperature region of 170–240 °C.  相似文献   

16.
宋本营  王保国  陈亚芳 《山西化工》2012,32(2):14-15,43
以超细RDX为主体炸药,通过添加Al粉,干法工艺制备出超细RDX/Al混合炸药;对制得的样品进行了撞击感度、摩擦感度测试。实验结果表明,相对超细RDX,超细RDX/Al混合炸药的撞击感度和摩擦感度有一定程度的降低。  相似文献   

17.
The product quality of energetic materials is predominantly determined by the crystallization process applied to produce these materials. It has been demonstrated in the past that the higher the product quality of the solid energetic ingredients, the less sensitive a plastic bonded explosive containing these energetic materials becomes. The application of submicron or nanometric energetic materials is generally considered to further decrease the sensitiveness of explosives. In order to assess the product quality of energetic materials, a range of analytical techniques is available. Recent attempts within the Reduced‐sensitivity RDX Round Robin (R4) have provided the EM community a better insight into these analytical techniques and in some cases a correlation between product quality and shock initiation of plastic bonded explosives containing (RS‐)RDX was identified, which would provide a possibility to discriminate between conventional and reduced sensitivity grades.  相似文献   

18.
FOX-7和RDX基含铝炸药的冲击起爆特性   总被引:1,自引:0,他引:1  
为研究FOX-7和RDX基含铝炸药的冲击起爆特性,对其进行了冲击波感度试验和冲击起爆试验,结合冲击波在铝隔板中的衰减特性,确定了FOX-7和RDX基含铝炸药的临界隔板值和临界起爆压力,并通过锰铜压阻传感器记录了起爆至稳定爆轰过程压力历程的变化。结果表明,以Φ40mm×50mm的JH-14为主发装药时,FOX-7和RDX基含铝炸药临界隔板值分别为37.51和34.51mm,对应的临界起爆压力为10.91和11.94GPa;起爆压力为11.58GPa时,FOX-7炸药的到爆轰距离为25.49~30.46mm,稳定爆轰后的爆轰压力为27.68GPa,爆轰速度为8 063m/s;起爆压力为14.18GPa时,RDX基含铝炸药的到爆轰距离为17.27~23.53mm,稳定爆轰后的爆轰压力为17.16GPa,爆轰速度为6 261m/s。  相似文献   

19.
以超细黑索今(RDX)为原料,在其中加入一定量、一定粒度的Ni粉,通过干混法和湿混法2种方法制备出超细RDX/Ni混合炸药,并对其撞击感度进行测试.通过分析其爆炸概率,进而得到镍粉的含量和粒度对超细黑索今(RDX)撞击感度的影响规律以及制备方式对撞击感度的影响.  相似文献   

20.
RDX基铝薄膜炸药与铝粉炸药水下爆炸性能比较   总被引:1,自引:1,他引:1       下载免费PDF全文
为了减少铝粉炸药在生产过程中因铝粉对环境污染,降低铝粉炸药的撞击感度,提高含铝炸药的成型性及力学性能,将RDX用铝薄膜分层包裹得到新型的铝薄膜混合炸药。将铝薄膜混合炸药与铝粉炸药进行水下爆炸实验与爆速实验,得到两种炸药的爆速与压力时程曲线,经过分析计算得到两种炸药的压力峰值、冲量、冲击波能、气泡脉动周期与气泡能。结果表明:铝薄膜炸药药柱的轴向为RDX与铝薄膜独立贯通的结构,有利于降低混合炸药中添加物对基体炸药爆轰波传播的影响,从而使铝薄膜混合炸药的爆速高于铝粉炸药,导致铝薄膜炸药的冲击波损失系数高于铝粉炸药,使铝薄膜混合炸药的总能量、比气泡能与铝粉炸药相当情况下,其比冲击波能却降低了10.16%~10.33%,计算过程说明铝薄膜混合炸药的C-J压力计算公式具有合理性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号