首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
针对远距离光纤频率直接传递由机械应力引入的相位噪声,分析了机械应力对频率传递性能的影响,设计了基于电子相位补偿的光纤频率传递方案,进行了光缆晃动模拟试验,并在实际架空光缆上进行试验,补偿了大部分由光缆环境变化引起的相位抖动,时钟源输出相位噪声为-120 dBc/Hz@1 Hz的10 MHz频率信号,经过基于电子相位补偿光纤频率传递系统后相位噪声达-111 dBc/Hz@1 Hz,与未进行电子相位补偿光纤频率传递相比相位噪声提高12 dB,实现10 MHz频率信号高质量传输。  相似文献   

2.
搭建了一套光纤相位噪声抑制系统。通过环外自拍频,得到噪声本底的秒级频率稳定度为6.8×10~(-18),2000s平均时间后达到2.3×10~(-19)。利用该系统可实现窄线宽激光频率在1.6km实际光纤链路中的传输,传输后环外自拍频信号的秒级频率稳定度可达1.2×10~(-17)。基于连接两个实验室的808m实际光纤链路,将此系统应用于1.5μm超稳激光的比对,通过拍频测量得到激光线宽为(0.54±0.15)Hz,秒级频率稳定度为1.2×10~(-15)。  相似文献   

3.
基于波分复用技术,通过级联方式在230 km光纤链路中实现了频率和时间的同传。该级联系统包含了150 km和80 km两级链路系统,其中为了补偿150 km光纤链路中的损耗,在链路中间放置了一个双向掺铒光纤放大器。当每一级传递系统通过光学补偿方式达到稳定后,整个级联系统的频率稳定度为3.1×10~(-14)(平均时间1 s时)和6.3×10~(-18)(平均时间104s时),时间稳定度为3.5 ps(平均时间102~104s时)。实验结果也证明,不管是对频率信号还是时间信号,都满足误差理论,整个系统的稳定度几乎等于两级链路稳定度的标准偏差。同时通过两级系统的校准,最后得到整个级联系统的时间同步准确度为90 ps。  相似文献   

4.
针对收发分置雷达发射站和接收站之间频率基准的相位同步问题,理论分析了收发站之间的相位误差对雷达的性能影响,并提出一种基于光纤链路的相位同步技术。该技术提取往返光纤链路中引入的相位误差,并通过移相器对输出频率信号进行相位误差预补偿,实现了发射站和接收站的高精度的相位同步。20 km 往返光纤链路的实验结果表明该技术显著抑制了收发站之间的相位误差和噪声,可以有效减少相位误差带来的目标探测偏差。  相似文献   

5.
设计了一种基于FPGA、温控光纤延迟线和压电陶瓷(PZT)光纤延迟线的光纤频率传递主动光学相位补偿系统,设计和制作了大动态范围温控光纤延迟线及其驱动电路。在基于Round-Trip方案的20km光纤频率传递实验系统中进行了测试。  相似文献   

6.
面向航天探测等应用中对时频同步的需求,针对传统时频传输方法精度不足的问题,提出了一种基于光纤色散时延调控的时频传递系统。分析了利用不同光载波波长产生不同色散时延的方法,来补偿光纤信道由于环境因素的变化产生的时延随机抖动的原理。设计了多个频率传输实验,实验结果表明,该系统可以获得6.5×10-14@1 s和2.1×10-17@104s的频率稳定度。该时频传递技术已成功应用于"嫦娥三号"精密测定轨试验和北斗导航卫星连线干涉测量系统。  相似文献   

7.
为实现准国土范围内高精度授时和守时,利用光纤传递铯钟、氢钟等高精度原子钟的时频信号,在实际光纤链路上验证其长距离传递性能。采用波分复用和双向双波长的传输方法,介绍了在275km京沪干线上实现高精度时频传递的相关工作。针对长距离光纤链路的特点,探讨了链路损耗与散射、色散与频率噪声、补偿系统动态范围和反馈带宽等对时频传递性能的影响。实验获得了频率信号的秒稳定度达5×10-14和天稳定度达7×10-18的传递性能,同时,千秒尺度下的时间方差可达2.4ps。  相似文献   

8.
通过级联方式在京沪光纤骨干网中实现了430km的高精度频率传递。该级联系统包含了280km和150km两级系统,同时为了补偿光纤损耗,在两级链路中采用了低噪声高对称的双向掺铒光纤放大器。当每一级传递系统通过光学补偿方式达到稳定后,整个级联系统引入的频率不稳定度为在1s处1.02×10-13和在104 s处8.24×10-17,实验结果验证了级联系统的实际结果与两级系统计算结果之间符合误差理论。  相似文献   

9.
为了更好地实现远程光钟之间的高精度比对,对意大利Calosso小组所提出的光纤双向光学相位比对方案进行了拓展,提出了一种基于本地测量的双向光学相位比对方法。同源的两路光信号从同一光纤两端注入,其中一路光信号经光纤传输到远端后经反射原路返回本地端,另一路光信号从远端经光纤传输至本地端。两个信号均在本地端与参考光进行拍频,将拍频得到的两路拍频信号的相位进行比对。利用这种结构,系统不需要有源光纤相位噪声补偿也可以消除叠加在光纤链路上的共模相位噪声,该结构的最大优势在于拍频信号的采集和处理均可以在本地端完成,不需要引入额外的时间同步信号来保证两地拍频信号采集同步进行,简化了实验系统。计算分析了该方案的相位噪声极限,并建立了基于60km缠绕光纤的示范系统来进行测试,测得其秒级频率稳定度为1.45×10~(-16),千秒稳定度达到1.51×10~(-19)。该方案有望用于远程光钟和其他原子钟之间更可靠的高精度频率比对。  相似文献   

10.
为研究光纤频率传递的稳定度损失,分析了光纤链路时延波动对频率传递稳定度的影响,得出因温度变化引起的链路长度变化、折射率变化和激光器输出波长漂移带来的时延波动是影响频率传递稳定度的主要因素。建立Round-trip时序模型,定量分析时延波动残留,发现因环境温度缓变引入的时延波动可以得到有效补偿,因激光器动态结温度快变导致输出波长漂移引入的时延波动无法有效补偿,是稳定度损失的关键因素。降低激光器动态结温度的变化速率,是提高频率传递稳定度的有效手段。要使时延波动对频率传递稳定度的影响小于10~(-15)s~(-1)、10~(-20)d~(-1)(d~(-1)即每天),必须采取有效的温控措施,精确控制激光器动态结温度变化率,使其小于0.04℃/s。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号