首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of matrix polymer and filler content on the rheological behavior of hydroxyapatite‐filled injection molding grade high‐density polyethylene (HDPE) has been studied. Studies of the flow curves revealed that the matrix and the composite exhibit three distinct regions in the flow curve, namely, a pseudoplastic region at low to moderate shear rates, a plateau and a second pseudoplastic region at high shear rates. The shear stress corresponding to the plateau (τc) is dependent on both the filler concentration and the melt temperature. Addition of HA in the HDPE matrix increases the value of τc and decreases compressibility of the melt. An increase in temperature also raises the value of τc. From the nature of flow curves it is concluded that the matrix polymer largely decides the rheology of the composite.  相似文献   

2.
The influence of temperatures and flow rates on the rheological behavior during extrusion of acrylonitrile–butadiene–styrene (ABS) terpolymer melt was investigated by using a Rosand capillary rheometer. It was found that the wall shear stress (τw) increased nonlinearly with increasing apparent shear rates and the slope of the curves changed suddenly at a shear rate of about 103 s?1, whereas the melt‐shear viscosity decreased quickly at a τw of about 200 kPa. When the temperature was fixed, the entry‐pressure drop and extensional stress increased nonlinearly with increasing τw, whereas it decreased with a rise of temperature at a constant level of τw. The relationship between the melt‐shear viscosity and temperature was consistent with an Arrhenius expression. The results showed that the effects of extrusion operation conditions on the rheological behavior of the ABS resin melt were significant and were attributable to the change of morphology of the rubber phase over a wide range of shear rates. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 606–611, 2002  相似文献   

3.
The melt flow of glass bead-filled low-density polyethylene composites in extrusion have been observed by using a capillary rheometer to investigate the effects of temperature, shear rate, and filler content on the rheological properties of the melts. The results show that the melt shear flow obeys a power law, and the dependence of the apparent shear viscosity, ηapp, on temperature is in accord with an Arrhenius equation. At the same temperature and shear rate, ηapp increases slightly with increasing the volume fraction of glass beads, but the flow behavior index decreases with increasing filler content. In addition, the first normal stress difference of the melts linearly increases with increasing wall shear stress. Good agreement is shown with the N1 calculated with the equation presented in this article and the pressured data from the sample melts. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 1451–1456, 1999  相似文献   

4.
A careful characterization and rheological study of low density polyethylene (LDPE) reveals that long-chain branching (LCB) plays a decisive role. At constant molecular weight (M?w) higher LCB reduces the Newtonian viscosity ηo and the shear sensitivity, increases the activation energy Eo, and finally delays transition to pseudoplastic flow to higher shear rates and the onset of melt fracture to higher shear stresses (τd). The flow parameters ηo, \documentclass{article}\pagestyle{empty}\begin{document}$ \dot \gamma _{cr} $\end{document}cr, τd, and the derived flow relaxation times are uniquely correlatable by means of a modified molecular weight (gM?w) incorporating the LCB effect. High density polyethylene are less shear sensitive than their low-density counterparts, have a lower activation energy, fracture at higher shear stress levels and cannot be regarded as branchless LDPE's.  相似文献   

5.
Understanding the rheological behavior of plasticized polylactide (PLA) contributed to the optimization of processing conditions and revealed the microstructure–property relationships. In this study, the morphological, thermal, steady and dynamic rheological properties of the PLA/poly(ethylene glycol) (PEG) blends were investigated by scanning electron microscope, differential scanning calorimeter, and capillary and dynamic rheometers, respectively. The results illuminated that the melt shear flow basically fitted the power law, whereas the temperature dependence of the apparent shear viscosity (ηa) or complex viscosity (η*) followed the Arrhenius equation. Both the neat PLA and PLA/PEG blends exhibited shear‐thinning behavior. Because the incorporation of PEG reduced the intermolecular forces and improved the mobility of the PLA chains, the ηa, η*, and storage and loss moduli of the PLA/PEG blends decreased. The PEG content (WPEG) ranged from 0 to 10 wt %, both ηa and η* decreased significantly. However, the decrements of ηa and η* became unremarkable when WPEG exceeded 10 wt %. The reason was attributed to the occurrence of phase separation, which resulted in the decrease in the plasticization and lubrication efficiencies. This study demonstrated that the addition of the right amount of PEG obviously improved the flow properties of PLA. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 42919.  相似文献   

6.
We have studied the effect of the amount Φc of a reactive compatibilizer on the rheological properties of a polyethylene/polyamide blend, under steady shear and transient extensional flows. Here, we propose to describe the viscosity η(γ) and the first normal stress coefficient γ1(γ) using a Carreau‐type power‐law model, which is a three‐parameter model. A single model is sufficient to express the behavior of γ1(γ) On the other hand, the complete η(γ) curve is described by the superposition of two Carreau models, in relation to the presence of two relaxation mechanisms. Moreover, the extentional viscosity ηE(?), estimated using the end pressure drop observed in capillary flow experiments, is expressed by a two‐parameter power‐law model.  相似文献   

7.
Studies on melt rheological properties of blends of low density polythylene (LDPE) with selected grades of linear low density polyethylene (LLDPE), which differ widely in their melt flow indices, are reported. The data obtained in a capillary rheometer are presented to describe the effects of blend composition and shear rate on flow behavior index, melt viscosity, and melt elasticity. In general, blending of LLDPE I that has a low melt flow index (2 g/10 min) with LDPE results in a decrease of its melt viscosity, processing temperature, and the tendency of extrudate distortion, depending on blending ratio. A blending ratio around 20–30% LLDPE I seems optimum from the point of view of desirable improvement in processability behavior. On the other hand, blending of LLDPE II that has a high melt flow index (10g/10 min) with LDPE offers a distinct advantage in increasing the pseudoplasticity of LDPE/LLDPE II blends. © 1996 John Wiley & Sons, Inc.  相似文献   

8.
Tetrafluoroethylene/hexafluoropropylene copolymers (FEPs) are widely used in diverse fields due to their outstanding performances in chemical resistance, thermal stability, and insulation. However, their processsability is poor, exhibiting narrow stable flow region and remarkably early melt fracture. Herein, we tried to explore the origin of such poor processability in a rheological way, because melt rheology behaviors are highly related to their processing processes. The shear rheology results indicate that FEPs exhibit multiple flow regions. The flow curve of FEP608 was obtained, and its η0 value was calculated to be 1.70 kPa s−1 at 360°C. Extensional rheological data suggest that FEPs have much lower e and B values when compared with those of common polymers, suggesting their weaker elasticity during extrusion. Based on such rheological results, the poor processability of FEPs is ascribed to their high viscosity induced by special interchain interaction associating with F atom, which can easily cause accumulated elastic energy. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

9.
The rheological behaviors of semi‐aromatic transparent polyamide (SATPA) melt are investigated using a capillary rheometer. The effects of shear rate, shear stress, and temperature on the apparent viscosity ηa of SATPA are discussed. A correlation of non‐Newtonian index with temperature is obtained. The results show the shear thinning of SATPA; meanwhile ηa decreases with increasing temperature and shear rate, and the viscous flow activation energy is further obtained from temperature dependence of the samples. It was concluded that the apparent viscosity ηa is sensitive to temperature at lower shear rate owing to the higher viscous flow activation energy; on the contrary, the influence of temperature effect on the apparent viscosity becomes minor at higher shear rate due to the lower viscous flow activation energy. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 1586–1589, 2005  相似文献   

10.
Prediction of the screw horsepower requirement involves, among many others, the calculation of the shear stress (τs) between the solid polymer and the barrel surface during melting. Prediction of the solid bed down-channel velocity also requires the calculation of τs. However, the pseudoplastic nature and strong temperature dependence of melt viscosity make the mathematics of calculating τs extremely difficult. As a first step of developing a reasonable mathematical model for calculating τs, experimental measurements of τs were made over a wide range of metal temperature and sliding speed for five commercial polymers using molded, block samples. Although dependences of τs on metal temperature and sliding speed were found to have similar functionality to those of the dependences of melt viscosity on melt temperature and shear rate, this study showed that τs could not be expressed as a sole function of the melt rheological properties. Our subsequent study, to be reported in a follow up paper, will show that τs must be expressed as a function of the thermodynamic properties and melt density of the polymer as well as the melt rheological properties and the melting conditions.  相似文献   

11.
Studies have been made on the dynamic oscillation and static properties in the molten state of blends from polybutene-1 and polypropene. Measurements were made with a balance-rheometer system Dr. Kepes and a capillary viscosimeter. Three experimental parameters, η0, τ0 and h have been determined. Steady shear and oscillatory shear viscosity data have been compared. A plot of intrinsic viscosity vs. composition of blends shows a minimum. Variation of η0 and τ0 with temperature follow the Arrhenius law but h does not depend on temperature.  相似文献   

12.
A model that relates to the molecular weight distribution (MWD) of high-density polyethylene to the steady-state shear melt viscosity has been applied to polystyrene melts. Relations are developed for predicting the rheological flow curve from the molecular weight distribution. Relationships are also developed to predict the MWD from the flow curve, although practical limitations to this procedure are given. From a consideration of predictions of the model and experimental data, it is concluded that the transition for a given molecular species from Newtonian to non-Newtonian flow is sharp. Additionally, the calculated empirical parameter that partitions the MWD into molecules that act in a Newtonian fashion and those that do not is shown to be equivalent to the largest molecular weight homolog that can still undergo Newtonian flow at a given shear rate for monodisperse fractions. The temperature dependence of the relaxation times is found to be somewhat higher than that predicted by the Rouse theory. An activation energy of 30 kcal/mole for η0 was used to fit the experimental viscosity data adequately at 190° and 225°C. The terminal relaxation spectrum for a narrow-MWD polystyrene standard is calculated and found to agree well for long relaxation times with that reported in the literature.  相似文献   

13.
Rheological and thermal properties of m-LLDPE blends with m-HDPE and LDPE   总被引:1,自引:0,他引:1  
The dynamic and steady state behavior of metallocene linear low density polyethylene (m-LLDPE) blended with metallocene high density polyethylene (m-HDPE) and with low density polyethylene (LDPE) were measured in parallel plate rheometer at 160, 180, and 200 °C. The composition dependence of zero shear viscosity η0, the characteristic relaxation time τ0 and the characteristic frequency ω0 of m-LLDPE/m-HDPE blends show a linear variation in the whole range of weight fraction, which indicates that m-LLDPE/m-HDPE blends are miscible blend. At the same time, m-HDPE showing a ‘dissident’ rheological behavior should possess a certain very low degree of LCB. Two calculation methods of LCB verify this point. In contrast, the composition dependence of zero shear viscosity η0 of m-LLDPE/LDPE blends shows a positive deviation from the log-additivity rule, which can be well fitted by using the immiscible blend equation of Utracki. The characteristic relaxation time τ0 and the characteristic frequency ω0 have a sharp variation with the small amounts of LDPE in the blends, which also indicates a phase separation in the system. The thermal properties of m-LLDPE/m-HDPE blends are very similar to a single-component system. However, m-LLDPE/LDPE blends are immiscible in both melt and crystal states. DSC results are consistent with the rheological properties of these two series of blends.  相似文献   

14.
The phenomenon of extrudate distortion, which is called melt fracture, was studied for polystyrene samples of narrow and broad molecular weight distribution, and commerical samples of polypropylene and linear and branched polyethylene. It was experimentally found that the shear stress at the onset of melt fracture (τcr) is of the order of 106 dynes/cm2 and independent of the distribution of molecular weights. As the weight average molecular weight increases the shear stress τcr decreases. For polystyrene extruded at τcr the recoverable shear strain, which is defined to be half the ration (first normal stress difference/shear stress), was found proportional to the factor M zM z+1/M w2 which represents the distrubution of molecular weights. The proportionality is expected to hold for other polymer systems. The polymer behavior at the onset of melt fracture was explained in terms of Graessley's entanglement theory and his correlation between true and Rouse shear compliance.  相似文献   

15.
The non-Newtonian viscosity of concentrated solutions of a styrene-butadiene-styrene, SBS, block copolymer was measured with a novel capillary viscometer. Polymer concentrations ranged from 0.165 to 0.306 g/cc. Apparent shear rates ranged from 1 to 105 sec?1. Five different solvents were employed. All of the flow curves can be reduced to a single master curve with the same shape exhibited by monodisperse polystyrenes and the Graessley theory. The shift factor for the shear rate axis, τ0, approximately parallels the Rouse relaxation time, τR, but shows a residual concentration and solvent dependence not predicted by the Rouse form. For different solvents at the same concentration, better solvents show a minimum relative zero shear viscosity, η0s, and a maximum ratio τR0. It is concluded that all solvent effects are not adequately incorporated into the zero shear viscosity for the purposes of constructing master plots; however, the shape of the master plot is not affected by the solvent or the polymer block structure.  相似文献   

16.
研究了醚型阳离子染料可染改性共聚酯(ECDP)的流变性能,与阳离子染料可染共聚酯(CDP)及聚对苯二甲酸乙二醇酯(PET)进行了比较。结果表明:ECDP属于切力变稀流体。在相同温度和剪切速率的条件下,与PET相比,CDP熔体的表观粘度(ηa)增加,ECDP的ηa下降;随着第四单体聚乙二醇含量的增加,ECDP的ηa、粘流活化能及结构粘度指数均下降,而非牛顿指数增加,流动性增强,可纺性得到改善。  相似文献   

17.
The melt rheological behavior of neem bark flour (BF) filled high density polyethylene (HDPE) has been studied at varying volume fraction (?f) from 0 to 0.26 at 180, 190, and 200°C in the shear rate range from 100 to 5000 s?1 using extruded pellets of the composites. The melt viscosity of HDPE increases with ?f because the BF particles obstruct the flow of HDPE. With the incorporation of the coupling agent HDPE‐g‐MAH, the viscosity decreased compared to the corresponding compositions in the HDPE/BF systems due to a plasticizing/lubricating effect by HDPE‐g‐MAH. The composites obeyed power law behavior in the melt flow. The power law index decreases with increase in the filler content and increases with temperature for the corresponding systems while the consistency index showed the opposite trend. The activation energy for viscous flow exhibited inappreciable change with either ?f or inclusion of the coupling agent, however, the pre‐exponential factor increased with filler concentration. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

18.
The rheological behavior of blends of poly(styrene-co-acrylonitrile) (SAN) and poly(ε-caprolactone) (PCL) was investigated, using a cone-and-plate rheometer. For the study, blends of various compositions were prepared by melt blending using a twin-screw compounding machine. The rheological properties measured were shear stress (σ12), viscosity (η), and first normal stress difference (N1) as functions of shear rate (γ) in steady shearing flow, and dynamic storage modulus (G′) and loss modulus (G″) as functions of angular frequency (ω) in oscillatory shearing flow, at various temperatures. It has been found that logarithmic plots of N1 versus σ12, and logarithmic plots of G′ versus G″, become virtually independent of temperature but vary regularly with blend composition, and that the zero-shear viscosity of the blends, (ηo)blend, follows the relationship, 1/log(ηo)blend = wA/log η0A + wB/log η0B, where η0A and η0B are the zero-shear viscosities of components A and B, respectively, and wA and wB are the weight fractions of components A and B, respectively. The physical implications of the relationship found are discussed.  相似文献   

19.
The steady shear viscosity (ηs), the steady first normal stress coefficient (Ψ1), the steady second normal stress coefficient (Ψ2), and extensional viscosity (ηe) are four important parameters for polymer melts during polymer processing. In this article, we propose a stress and rate-dependent function to describe creation and destruction of polymer junctions. Moreover, we also introduce a movement expression to describe nonaffine movement of network junctions. Based on network theory, a nonaffine single-mode rheological model is presented for the steady flow of polymeric melts, and the equations of ηs, Ψ1, Ψ2, and ηe are derived from the model accordingly. Furthermore the dependences of ηs and ηe on model parameters are discussed for the model. Without a complex statistical simulation, the single-mode model with four parameters yields good quantitative predictions of the steady shear and extensional flows for two low density polyethylene melts reported from previous literature in very wide range of deformation rates. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

20.
梳状聚合物二醇的结构与流变性能关系   总被引:1,自引:0,他引:1       下载免费PDF全文
邓湘华  罗远芳  刘芳  陈勇军  贾德民 《化工学报》2007,58(11):2915-2919
制备了一系列支链结构不同的梳状聚合物二元醇(CPD),并用FTIR对其结构进行了表征。着重研究了CPD梳状支链结构和温度对其流变性能的影响,并测定了CPD的流动活化能ΔEη0。研究发现,梳状支链的长度增加和极性增大,CPD的黏度增加,出现剪切变稀行为的剪切速率降低。CPD的η-γ曲线出现两次剪切变稀行为,在两次行为之间存在一平台,这一平台随温度增加向高剪切速率方向移动,并逐渐变短,最后在50℃时消失。随梳状支链长度增加和极性增大,CPD的流动活化能ΔEη0增加。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号