首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 101 毫秒
1.
非均质材料在热冲击下的耦合热弹性理论   总被引:2,自引:0,他引:2  
依照连续介质力学的基本理论,推导出了非均质弹性材料热冲击问题所满足的热传导和热弹性运动方程。  相似文献   

2.
本文简略地阐述了近三十年来热弹性力学的研究情况和发展。  相似文献   

3.
三维多孔介质的热弹性动力问题研究   总被引:2,自引:1,他引:1  
在Biot理论的基础上,考虑了瞬态热弹性,热载荷影响因素,对在这一因素作用下的三维多孔介质的基本方程进行了推导。讨论了瞬态热弹性,热载荷作用下多孔介质4种情况的边界并进行了划分。  相似文献   

4.
以三层叠层材料为例,基于Suresh等人建立的热弹塑性变形理论,考虑金属层从两侧均出现塑性区域的可能。建立了叠层材料热弹塑性分析的理论模型,给出了叠层材料在热载荷作用下完整的热弹塑性变形历史、热弹性一塑性临界温度和热应力分析公式,推广和完善了Suresh等人的热弹塑性变形理论.  相似文献   

5.
在耦合热弹性问题变分原理的基础上,导出非定常温度场热弹性平面问题的有限元法基本方程。推导中,弹性平面划分为三节点三角形单元,时间过程划分为时间元,时间元中各变量(节点的位移和温度)随时间作线性变化。得出以各节点在每个瞬时(时间元的端点)的位移和温度为待定值的两组耦合的线性代数方程组,即基本方程。  相似文献   

6.
以塑性增量理论为基础,介绍了热弹性应力分析的基本原理及有限元程序的基本公式,该程序可用于二维平面及三维轴对称问题温度场、热弹塑性应力场分析。  相似文献   

7.
本文直接用权函数将边界条件引入形成三类边界条件下的温度场的积分方程,用常数元和线性元数值上实现了D. J. Denson提出的方案,并对D. J. Denson的提法进行了改进。对二维问题通过算例进行了分析比较。探讨了温度场和热弹性问题的积分方程对无穷远处的边界条件的适应性问题,用分区法和弹性抗力法对热弹性力学的外问题的边界条件进行了处理。数值计算结果表明,本文的方法可靠,精度高。  相似文献   

8.
梯度功能材料热弹性应力的分析方法   总被引:1,自引:0,他引:1  
本文介绍了近年来国外有关梯度功能材料热弹性应力问题的最新研究方法,并对其方法特点进行了评述。  相似文献   

9.
基于轴线可伸长杆的几何非线性理论,建立了两端的转动方向弹性约束杆的热屈曲控制方程,该问题是包含杆轴线孤长在内的多未知函数的强非线性两点边值问题,无法求其解析解,本文采用打靶法得到了该问题的数值解,给出了具有不同长细比、不同弹性支承系数杆的热过屈曲平衡路径和平衡构形。  相似文献   

10.
建立了滑动摩擦系统热弹性失稳的数学模型,并推导了不同热点模式对应的临界速度表达式。分析了摩擦副的厚度和滑动层材料的热物理特性参数对摩擦系统热弹性失稳的影响。结果表明:滑动摩擦系统更易出现反对称分布的热点模式;增加摩擦层厚度,减小滑动层厚度、热传导系数、弹性模量以及热膨胀系数均可以提高标志滑动摩擦系统进入热弹性失稳状态所需的最低临界速度,而滑动层比热容对系统的稳定性几乎没有影响。  相似文献   

11.
针对空气源热泵工作时能效比会随着气温下降而明显降低的问题,在空气源热泵上增加了一级蓄热装置。在MATLAB下对单级蓄热器空气源热泵进行仿真,结果表明增加蓄热装置可以平衡空气源热泵的能效比。以太原最冷月统计24 h平均温度为前提,模拟蓄热器在不同质量的蓄热材料、不同长度的蓄热管和放热管下的不同表现。仿真结果表明,最优换热材料质量为170 kg,蓄热管为30 m,放热管为8 m。  相似文献   

12.
热管性能评价准则探讨   总被引:5,自引:0,他引:5  
传统评价热管的传热性能的方法是比较热管的等效导热系数(有效寻热系数、当量导热系数、相当导热系数)的大小,其不足之处是几何因素与传热因素混在一起来评定传热性能。为此,在剖析传统评价热管的传热性能的方法的基础上,提出了用等效对流换热系数来评价热管性能,等效对流换热系数客观地描述了热管综合的传热能力,其值的大小可以作为判断热管传热性能优劣的标准。同时建立了相应的理论模型,从而使对热管性能的评价更加完善、更加合理。  相似文献   

13.
本文提出了热管换热器热传递矩阵的概念.用热传递矩阵相似关系,推导出了热管换热器传热效率计算式.并讨论了极限情况下的热管换热器效率表达形式.  相似文献   

14.
针对渗流条件下地埋管换热器受到热短路影响,导致夏季埋管出口水温上升以及换热量减少的现象,采取在进出水支管间加装隔热板的措施进行优化。通过对单U型地埋管换热性能的数值模拟,对比分析了加装隔热板前后的传热过程,并深入研究了隔热板的几何尺寸和安装位置对换热量的影响。结果表明:加装隔热板可有效抑制地埋管换热器的热短路现象,提高换热能力;隔热板宽度为120 mm时,U型地埋管换热器换热性能最优;隔热板高度取50 m时,换热器单位井深换热量最大,达到44.703 W/m;将隔热板安装在两支管中心向出水管侧偏移2 mm处,换热效果最佳。  相似文献   

15.
热管技术研究、发展与工业应用   总被引:1,自引:0,他引:1  
介绍了一些热管技术在工程的典型应用,包括废热回收设备和工业过程设备.水碳钢热管技术在许多工程领域都得到了成功应用,如:用于废热回收、节能与环境保护的空气预热器和废热锅炉.液态金属高温热管技术在过程装备得到了广泛应用。高温热空气发生器和热管技术在化学反应器中也能发挥作用,如在氨合成塔中的应用.热管技术的成功应用是建立在热管技术的基础研究之上的,这些研究包括:热管内汽液两相流动与传热、热管传热极限、热管传热强化和热管材料相容性与热管的寿命等方面理论和实验研究.高效传热与传质的热管设备在许多工程应用领域将会得到越来越重要的应用.  相似文献   

16.
采用CFD数值模拟方法和折流板换热器、帘式折流片换热器周期性全截面计算模型,对两种换热器在正三角形布管方式下的传热系数、阻力、综合性能随Re数的变化情况进行了数值研究.研究结果表明,两种换热器对应的换热系数和壳程压力损失均随Re数的增加而增大,折流板换热器的传热系数大于帘式折流片换热器,约是帘式折流片的1.32倍,但其阻力大幅高于帘式折流片换热器,是帘式折流片换热器的2.4倍左右,两种换热器的综合性能均随Re数的增大而下降,帘式折流片换热器的α/ΔΡ几乎是折流板换热器的2倍,体现了帘式折流片换热器在保持较高的传热效果的情况下,具有显著的流动减阻性能.  相似文献   

17.
不锈钢衬纸在使用过程中要求具有一定的耐高温性能,为此可以通过添加某种耐高温助剂来达到目的.通过实验比较了两种无机耐高温助剂和一种有机耐高温助剂对纸页耐高温性能及强度性能的影响,以寻求合适的耐高温助剂及其适当的应用性能.研究结果表明,无机耐高温助剂具有较好的耐高温效果,但会对纸页的强度性能造成一定的损失;有机耐高温助剂耐高温效果不很明显,但不会影响纸页的物理强度.两者结合使用可以获得较好的耐高温效果和强度性能,其中无机耐高温助剂的质量分数为5%,有机耐高温助剂的质量分数为8%时可以达到进口不锈钢衬纸的耐高温性能指标.  相似文献   

18.
在江浙等湿热地区应用双级耦合热泵即空气源热泵代替水环热泵系统中的锅炉,空气源热泵制取低温热水作为水环热泵的热源,空气源热泵制冷循环除霜会使其供热量减少.在水环热泵空调系统中有串联在水环路上的蓄热水箱来改善系统的运行特性.通过计算,选择了合适的空气源热泵、水环热泵和蓄热水箱,通过实验研究了蓄热水箱对化霜的影响.由于蓄热水箱的存在,中间环路的热惯性较大,空气源热泵机组结、化霜对系统的影响与室温的稳定性几乎无关.空气源热泵机组可以应用于该系统,本实验系统的各项技术指标均能满足实际工程要求,为推广应用提供了必要的数据.  相似文献   

19.
理论成功应用于常规换热器的基础上,将传递效率、耗散数及基于耗散的换热器热阻应用于相变储能换热器的传热性能分析中。定义广义耗散率并由此推导出相变储能换热器蓄热、放热及总过程的传递效率及其瞬时值。确定耗散数及基于耗散的换热器热阻计算中换热量的取法。选取一种相变储能装置作为分析对象,通过理论分析绘制各主要部分温度变化趋势,进一步简化得到硅油、水的出口温度表达式,作为算例分析基础。结果表明, 传递效率的应用范围最广,可用于计算相变储能换热器蓄热、放热及总过程的(瞬时)不可逆热损失,且评价结果与传热性能相符,瞬时传递效率随蓄热时间的增加先增大后不变再增大,随放热时间的增加先减小后不变再减小; 耗散数在蓄热过程和总过程中的评价结果与传递效率一致,瞬时耗散数随蓄热时间的增加先减小后不变再减小,然而在放热过程中的应用受限。基于耗散的换热器热阻的部分评价结果与实际不符,应用限制较大。蓄热过程及总过程中,当蓄热量、取热量与蓄、放热阶段时长同步变化时, 传递效率、耗散数与基于耗散的换热器热阻几乎无变化;当装置传热性能提高时, 传递效率增大, 耗散数减小,基于耗散的换热器热阻减小;放热过程中,设置参数的变化不影响装置传热性能, 传递效率基本无变化。  相似文献   

20.
本文对升温型吸收热泵热管式降膜吸收器溶液吸收传热传质并通过热管移出吸收热的过程进行了数值研究。根据所求得的波动膜流解及建立的数学模型,通过求解热管加热段外壁面溶液波动降膜传递方程和热管传热方程,研究了膜雷诺数。低位余热温度、输出热温度等因素对传热传质过程的影响,对今后的研究工作提出了新的见解。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号