首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The microporous layer (MPL) of diffusion medium has an important impact on the water management ability of proton exchange membrane fuel cells. In this study, six kinds of carbon black were used to prepare the cathode MPL. The thickness, conductivity, pore structure, hydrophobicity, and surface microstructure of MPL were characterized. The single cell was prepared and electrochemical tests were performed. The results showed that the single cell prepared by Acetylene black (ACET) and Vulcan XC-72R has a considerable power generation performance. In addition, polyvinylidene fluoride hexafluoropropylene copolymer P(VDF-HFP) was used to replace Polytetrafluoroethylene (PTFE) as hydrophobic binder. MPL with different P(VDF-HFP) contents were prepared, and the single cell performance was investigated. The results showed that all the single cells prepared by P(VDF-HFP) were worse than that of PTFE. This study provides an important reference for further improving the performance of fuel cells from the perspective of material optimization with MPL.  相似文献   

2.
Water management of proton exchange membrane fuel cells remains a prominent issue in research concerning fuel cells. In this study, the gas diffusion layer (GDL) of a fuel cell is partially treated with a hydrophobic agent, and the effect of GDL hydrophobicity on the water distribution in the fuel cell is examined. First, the effect of the position of the cathode GDL hydrophobic area relative to the channel on the fuel cell performance is investigated. Then, the water distribution in the fuel cell cathode GDL is observed using X-ray imaging. The experimental results indicate that when the hybrid GDL's hydrophobic area lies on the channel, water tends to accumulate under the rib, and the water content in the channel is low; this improves the fuel cell performance. When the hydrophobic area is under the rib, the water distribution is more uniform, but the performance deteriorates.  相似文献   

3.
In this paper, a pore network model is developed to investigate the coupled transport and reaction processes in the cathode catalyst layer (CCL) of proton exchange membrane fuel cell (PEMFC). The developed model is validated by comparing the predicted polarization curve with the experimental data, and the parametric studies are carried out to elucidate the effects of CCL design parameters. With the decrease of the CCL thickness and the Nafion content, the cell voltage reduces at the low current density but increases when the current density is higher. The cell performance is also improved by increasing the proton conductivity of the Nafion film in the CCL. As compared to the CCL of uniformly distributed Nafion, the CCL with the Nafion volume decreasing along the thickness direction exhibits better performance at the high current density.  相似文献   

4.
We have reviewed more than 100 references that are related to water management in proton exchange membrane (PEM) fuel cells, with a particular focus on the issue of water flooding, its diagnosis and mitigation. It was found that extensive work has been carried out on the issues of flooding during the last two decades, including prediction through numerical modeling, detection by experimental measurements, and mitigation through the design of cell components and manipulating the operating conditions. Two classes of strategies to mitigate flooding have been developed. The first is based on system design and engineering, which is often accompanied by significant parasitic power loss. The second class is based on membrane electrode assembly (MEA) design and engineering, and involves modifying the material and structural properties of the gas diffusion layer (GDL), cathode catalyst layer (CCL) and membrane to function in the presence of liquid water. In this review, several insightful directions are also suggested for future investigation.  相似文献   

5.
Effective water removal from the proton exchange membrane fuel cell (PEMFC) surface exposed to the flow channel is critical to the operation and water management in PEMFCs. In this study, the water removal process is investigated numerically for a novel flow channel formed by inserting a hydrophilic needle in the conventional PEMFC flow channel, and the effect of the surface wettability of the membrane electrode assembly (MEA) and the inserted needle on the water removal process is studied. The results show that the liquid water can be more effectively removed from the MEA surface for larger MEA surface contact angles and smaller needle surface contact angles. The pressure drop for the flow in the channel is also examined and it is seen to be indicative of the liquid water flow and transport in the flow channel, suggesting that pressure drop is a useful parameter for the investigation of water transport and dynamics in the flow channel.  相似文献   

6.
Anode water removal (AWR) is studied as a diagnostic tool to assess cathode gas diffusion layer (GDL) flooding in PEM fuel cells. This method uses a dry hydrogen stream to remove product water from the cathode, showing ideal fuel cell performance in the absence of GDL mass transfer limitations related to water. When cathode GDL flooding is limiting, the cell voltage increases as the hydrogen stoichiometry is increased. Several cathode GDLs were studied to determine the effect of microporous layer (MPL) and PTFE coating. The largest voltage gains occur with the use of cathode GDLs without an MPL since these GDLs are prone to higher liquid water saturation. Multiple GDLs are studied on the cathode side to exacerbate GDL flooding conditions to further confirm the mechanism of the AWR process. Increased temperature and lower cathode RH allow for greater overall water removal so the voltage improvement occurs faster, though this leads to quicker membrane dehydration.  相似文献   

7.
In a proton exchange membrane fuel cell (PEMFC), effective GDL surface water elimination is significant to water management. This paper used the volume-of-fluid method (VOF) method to carry out simulation research on transferring liquid water in the flow channel with a hydrophilic pipe. The findings indicated that compared with a straight channel, a hydrophilic pipe structure could effectively remove water from the gas diffusion surface (GDL) and reduce the surface water coverage of the GDL. With the increase in the diameter and height of the pipe structure, the GDL surface's water coverage first increased and then decreased, and it was less with the pipe structure than with the direct flow channel. The removal rate of water on the GDL surface was accelerated. The spacing of hydrophilic pipes has a significant impact on the transportation of water. As the spacing increases, the removal rate of water on the GDL surface slowed. A hydrophilic pipe structure with a diameter of 75 μm, a height of 400 μm, and spacing of 300 μm has good water removal performance on the GDL surface. This research work proposes a new internal structure design of the flow channel, which has specific implications for removing water on the GDL surface.  相似文献   

8.
The work presented in this paper includes contributions that provide insight into liquid water transport in the proton exchange membrane fuel cell (PEMFC).  相似文献   

9.
10.
Control of water content of proton exchange membrane fuel cells (PEMFCs) within a reasonable rangeis a question worthy of study. This paper addresses questions of water transport, water fault, and water management methods in a PEMFC. Both an excess (overflow) or lack (dehydration) of water in a fuel cell may affect the performance and the service life. Herein, we describe in detail the effects of water content on the cathode, anode, gas diffusion layer (GDL), catalyst layer (CL) and flow channel. Monitoring the flow and accumulation of water directly in the PEMFC is the most effective approach to determine which of the two scenarios, overflow or dehydration, occurs. The water transport can be effectively investigated in a transparent fuel cell, using neutron scanning, nuclear magnetic resonance, and X-ray irradiation. Regarding the PEMFC water management, this paper reviews some current methods, such as improvement of the flow field structure, changing hydrophilic materials, and optimizing control systems.  相似文献   

11.
Microstructures of various sizes and shapes are fabricated on the surface of the catalyst layer (CL) of the cathode of a PEMFC, adjacent to the micro porous layer (MPL). Three major experimental results are: (1) performance is improved by up to 60% and the percentage of the increase is the same as that of the increase in interface area of CL and MPL; (2) the cell suffers no significant performance loss when Pt loading of the cathode is reduced from 1 to 0.25 mg cm−2 and; (3) transient responses in periodical linear sweep tests show an obvious performance “jump” for all the cathodes with microstructures when approaching steady state, but none for others. Based on observations, a proposal related to the development of water and, consequently, the major reaction sites in the CL is made: there is a general water “surface” inside the CL. Major electrochemical reactions occur above (on the MPL side) of this surface and within a limited height. The surface will “move” from the membrane toward the MPL as more water is produced. The vapor generation rate (current load) relative to the removal rate of the rest of the cell components will determine the steady state position of this water surface.  相似文献   

12.
In a proton exchange membrane fuel cell (PEMFC) water management is one of the critical issues to be addressed. Although the membrane requires humidification for high proton conductivity, water in excess decreases the cell performance by flooding. In this paper an improved strategy for water management in a fuel cell operating with low water content is proposed using a parallel serpentine-baffle flow field plate (PSBFFP) design compared to the parallel serpentine flow field plate (PSFFP). The water management in a fuel cell is closely connected to the temperature control in the fuel cell and gases humidifier. The PSBFFP and the PSFFP were evaluated comparatively under three different humidity conditions and their influence on the PEMFC prototype performance was monitored by determining the current density–voltage and current density–power curves. Under low humidification conditions the PEMFC prototype presented better performance when fitted with the PSBFFP since it retains water in the flow field channels.  相似文献   

13.
A novel self-humidifying membrane electrode assembly (MEA) with the active electrode region surrounded by a unactive “water transfer region (WTR)” was proposed to achieve effective water management and high performance for proton exchange membrane fuel cells (PEMFCs). By this configuration, excess water in the cathode was transferred to anode through Nafion membrane to humidify hydrogen. Polarization curves and power curves of conventional and the self-humidifying MEAs were compared. The self-humidifying MEA showed power density of 85 mW cm−2 at 0.5 V, which is two times higher than that of a conventional MEA with cathode open. The effects of anode hydrogen flow rates on the performance of the self-humidifying MEA were investigated and its best performance was obtained at a flow rate of 40 ml min−1. Its performance was the best when the environmental temperature was 40 °C. The performance of the self-humidifying MEA was slightly affected by environmental humidity. The area of WTR was optimized, and feasible area ratio of the self-humidifying MEA was 28%.  相似文献   

14.
In the fuel cell system, hydrogen recirculation subsystem is usually used to increase efficiency of hydrogen usage. While the hydrogen recirculation subsystem is a closed circuit that the water might be accumulated, water separator is used necessarily to separate the water and gas at the anode side. As the poor swirling effect caused by the guide vane in commercial separator, a novel water separator for proton exchange membrane fuel cell system is designed and the flow field characteristics of the separator are gained by computational fluid dynamics. The structure of volute inlet and overflow pipe in the novel separator can enhance the swirling flow and increase the tangential velocity. Based on the results, the separation efficiency and steady performance throughout the flow-rate range can be improved by the novel water separator.  相似文献   

15.
A proton exchange membrane fuel cell (PEMFC) cogeneration system that provides high-quality electricity and hot water has been developed. A specially designed thermal management system together with a microcontroller embedded with appropriate control algorithm is integrated into a PEM fuel cell system. The thermal management system does not only control the fuel cell operation temperature but also recover the heat dissipated by FC stack. The dynamic behaviors of thermal and electrical characteristics are presented to verify the stability of the fuel cell cogeneration system. In addition, the reliability of the fuel cell cogeneration system is proved by one-day demonstration that deals with the daily power demand in a typical family. Finally, the effects of external loads on the efficiencies of the fuel cell cogeneration system are examined. Results reveal that the maximum system efficiency was as high as 81% when combining heat and power.  相似文献   

16.
The effect of water generation on the performance of proton exchange membrane fuel cell (PEMFC) was investigated by using a periodical linear sweep method. Three different kinds of IV curves were obtained, which reflected different amount of water uptake in the fuel cell. The maximum water uptake that could avoid flooding in the fuel cell and the hysteresis of water diffusion were also discussed. Quantitative analysis of water uptake and water transport phenomena in this study were conducted both experimentally and theoretically. Results showed that the water uptake capacity for the fuel cell under no severe flooding was 27.837 mg cm−2. The transient response of the internal resistance indicated that the high frequency resistance (HFR) lagged the current with a value of about 20 s. The effect of purging operation on the internal resistance of the fuel cell was also explored. Experimental data showed that the cell experienced a continuous 8-min purging process can maintain at a relatively steady and dry state.  相似文献   

17.
Gas diffusion layer for proton exchange membrane fuel cells—A review   总被引:1,自引:0,他引:1  
Gas diffusion layer (GDL) is one of the critical components acting both as the functional as well as the support structure for membrane-electrode assembly in the proton exchange membrane fuel cell (PEMFC). The role of the GDL is very significant in the H2/air PEM fuel cell to make it commercially viable. A bibliometric analysis of the publications on the GDLs since 1992 shows a total of 400+ publications (>140 papers in the Journal of Power Sources alone) and reveals an exponential growth due to reasons that PEMFC promises a lot of potential as the future energy source for varied applications and hence its vital component GDL requires due innovative analysis and research. This paper is an attempt to pool together the published work on the GDLs and also to review the essential properties of the GDLs, the method of achieving each one of them, their characterization and the current status and future directions. The optimization of the functional properties of the GDLs is possible only by understanding the role of its key parameters such as structure, porosity, hydrophobicity, hydrophilicity, gas permeability, transport properties, water management and the surface morphology. This paper discusses them in detail to provide an insight into the structural parts that make the GDLs and also the processes that occur in the GDLs under service conditions and the characteristic properties. The required balance in the properties of the GDLs to facilitate the counter current flow of the gas and water is highlighted through its characteristics.  相似文献   

18.
In this work, a three-dimensional multiphase non-isothermal model incorporated with a capillary-extended sub-model in gas channels is used to investigate the coupled phenomena of water and thermal transport in proton exchange membrane fuel cells. Distributions of water and temperature along the flow path in the channel are highlighted and the pros and cons of various operating temperatures are elaborated. In addition, this work also sheds light on the impacts of temperature variations of bipolar plates induced by non-uniform cooling conditions, which have been overlooked by most previous works. An important phenomenon of water distribution, dry-out at inlets and flooding at outlets (DIFO), is observed and this non-uniform distribution is revealed to be greatly influenced by the operating temperature, inlet relative humidity and gas flow stoichiometry. Moreover, temperature variations of bipolar plates are shown to exert remarkable impacts on water distribution. Consequently, optimum matching between water and temperature fields is proposed to be of vital importance in fuel cell design, e.g., strong cooling at the inlet and weak cooling at the outlet are demonstrated to be a feasible way of mitigating the problem of DIFO.  相似文献   

19.
A numerical model of a proton exchange membrane fuel cell (PEMFC) cathode with a tapered channel design has been developed in order to examine the dynamic behavior of liquid water transport. Three-dimensional, transient simulations employing the level-set method (available in COMSOL 3.5a, a commercial finite element method software) have been used to explicitly track the liquid-gas interface. A liquid water droplet suspended in the center of the channel, 2 mm from the channel entrance, is subjected to airflow in the bulk of the channel. Three different cases have been studied: 1) hydrophobic bottom wall representing the gas diffusion layer and hydrophilic channel top and side walls, 2) all walls are partially wetted i.e. having a contact angle of 90°, 3) a hydrophilic bottom wall and hydrophobic top and side walls. The results show that tapering the channel downstream helps in water exhaust due to increased airflow velocity. A bottom wall, although hydrophilic, results in fast removal of water droplet as compared to partially wetted and hydrophobic bottom surfaces.  相似文献   

20.
Water flooding causes severe degradation of the performance and lifetime of proton exchange membrane fuel cell (PEMFC). In this study, a novel PEMFC stack with in-built moisture coil cooling was designed and the effects of moisture coil cooling on water management in the new PEMFC stack under various operating conditions were investigated. The result showed that the performance of the PEMFC stack was significantly improved due to the moisture condensation under high current density, high operating temperature, high relative humidity and high operating pressure. The output power was increases by 21.62% (525.71 W) at 1600·mA cm−2 while the increased parasitic power was no more than 35W. Moreover, degradation of the cathode catalyst layer after 100 h operation was also reduced by using moisture coil cooling. Compared with the situation without moisture condensation, the maximum decay rate of the cathode catalyst layer thickness after 100 h operation was reduced by 13.01%. Accordingly, the novel design is valuable and can be widely used in the future design of PEMFC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号