首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 203 毫秒
1.
以蘑菇酪氨酸酶为靶点,采用抑制动力学、荧光光谱分析结合分子对接模拟技术,系统研究鞣花酸(ellagic acid,EA)对酪氨酸酶的抑制作用及机理。体外研究与动力学结果表明,EA以可逆的混合型抑制方式显著抑制酪氨酸酶活性(IC50=0.05 mg/mL),其结合常数KIIS,表明EA与游离酶的结合比与酶-底物复合物的结合更紧密。荧光光谱猝灭分析表明,EA与酪氨酸酶存在静态猝灭作用,两者通过自发的吸热过程结合生成复合物,主要作用力为疏水作用力,只有1个或1类结合位点。同步和三维荧光光谱分析表明,EA使酪氨酸酶的微环境极性增大,疏水能力减弱,酪氨酸酶的Trp残基更靠近结合位点。分子对接模拟分析进一步印证上述实验结果,形象地表明EA对酪氨酸酶为混合型抑制,EA主要通过疏水作用力和氢键与游离酶或酶-底物复合物进行结合,最终导致酶活性降低。本研究对EA在食品工业中作为保鲜剂的各种应用具有一定参考意义。  相似文献   

2.
采用荧光光谱、紫外吸收光谱及分子对接研究了槲皮素与牛血清白蛋白(BSA)分子间的相互作用。结果表明,槲皮素对BSA有明显的荧光猝灭作用,加入槲皮素后BSA的紫外图谱发生变化,荧光猝灭常数Ksv与温度呈负相关,22℃的猝灭速率Kq为1.68×1013 L/(mol·s),说明槲皮素对BSA的荧光猝灭属于静态猝灭范畴。22℃时槲皮素与BSA相互作用的结合常数K为6.93×105 L/mol,结合位点数n为1.1467。热力学参数表明二者的结合力主要为疏水作用力,同步荧光光谱表明槲皮素与BSA的结合影响BSA的构象。分子对接结果表明槲皮素结合在BSA的亚结构区域II(siteⅠ)中,主要通过疏水作用结合同时还存在氢键及静电作用力,槲皮素与Trp-213氨基酸残基的作用距离更近,分子对接研究结果与光谱实验结果对应一致。  相似文献   

3.
为研究柚皮素对α-葡萄糖苷酶的抑制作用,本文采用酶动力学、荧光光谱和分子对接等方法研究了柚皮素对α-葡萄糖苷酶的抑制效果、抑制作用类型及其抑制作用的分子机制。柚皮素对α-葡萄糖苷酶的IC50为0.174 mmol/L,显著低于阿卡波糖的0.721 mmol/L,为非竞争型抑制剂,Ki值为0.114 mmol/L;柚皮素和α-葡萄糖苷酶的结合导致了酶分子的内在荧光静态猝灭,猝灭常数为0.1598×104 L/mol,结合位点数n为1。分子对接结果显示,在氢键、离子键、疏水作用、π-π T型堆积、静电作用五种作用力的驱动下,柚皮素结合于α-葡萄糖苷酶分子的一个疏水口袋中,结合能为?7.6 kJ/mol。本文研究结果表明,柚皮素是一种较好的食源性α-葡萄糖苷酶抑制剂,在辅助治疗糖尿病功能食品中具有良好的应用前景。  相似文献   

4.
为探究对羟基肉桂酸乙酯的降脂活性,本文采用酶反应动力学和分子对接技术来研究对羟基肉桂酸乙酯对胰脂肪酶的抑制类型和抑制机理。抑制动力学结果表明,对羟基肉桂酸乙酯对胰脂肪酶表现为可逆竞争型抑制(半抑制浓度IC50为41.07 μg/mL),其最大反应速率Vmax为2.61 μmol/L·min,抑制常数Ki为114.35 μg/mL;分子对接结果表明,对羟基肉桂酸乙酯可以与胰脂肪酶催化三联体中的氨基酸残基Ser152和His263形成强烈的氢键作用,且通过范德华力、氢键作用力和疏水作用力与胰脂肪酶的氨基酸残基作用,与底物p-NPB竞争酶的活性中心位点。本研究为对羟基肉桂酸乙酯在降脂功能食品中的应用提供了一定的理论依据。  相似文献   

5.
本文研究了对羟基肉桂酸(HCA)对酪氨酸酶催化单酚底物L-酪氨酸和催化二酚底物L-多巴的抑制能力,并利用紫外-可见光谱、荧光光谱以及分子对接技术探究了其抑制机理。结果表明对羟基肉桂酸对酪氨酸酶催化单酚底物L-酪氨酸比催化二酚底物L-多巴具有更强的抑制作用,半抑制浓度分别为0.096 mmol/L和0.500 mmol/L;紫外-可见分析发现对羟基肉桂酸能与Cu2+发生螯合,使光谱发生明显红移。进一步通过荧光光谱分析得到,对羟基肉桂酸在酪氨酸酶溶液中并没有出现荧光淬灭反而随着对羟基肉桂酸浓度的增大荧光强度变强,说明对羟基肉桂酸被酪氨酸酶催化氧化成对应的醌类物质。利用分子对接技术揭示了对羟基肉桂酸通过氢键和疏水作用竞争性地占据了单酚和二酚底物的空间位置,并与酪氨酸酶中双核铜离子螯合,从而抑制酪氨酸酶催化L-酪氨酸和L-多巴氧化的活性机理。  相似文献   

6.
文章通过光谱法和分子对接技术,研究了赤藓红与溶菌酶分子之间的相互作用。研究结果表明赤藓红能够以静态猝灭形式有效地猝灭溶菌酶的荧光,形成1∶1复合物。热力学结果表明赤藓红与溶菌酶体系主要作用力类型为疏水作用力和氢键,分子对接的结果也进一步说明了这个观点。根据荧光实验数据建立了赤藓红与溶菌酶的结合率模型,结果表明,随着温度的升高,无论是蛋白结合率还是色素结合率都呈现下降的趋势,结合体系的稳定性越来越低,并且由分子对接结果得知结合作用会对溶菌酶的活性产生影响。  相似文献   

7.
文章通过光谱法和分子对接技术,研究了赤藓红与溶菌酶分子之间的相互作用。研究结果表明赤藓红能够以静态猝灭形式有效地猝灭溶菌酶的荧光,形成1∶1复合物。热力学结果表明赤藓红与溶菌酶体系主要作用力类型为疏水作用力和氢键,分子对接的结果也进一步说明了这个观点。根据荧光实验数据建立了赤藓红与溶菌酶的结合率模型,结果表明,随着温度的升高,无论是蛋白结合率还是色素结合率都呈现下降的趋势,结合体系的稳定性越来越低,并且由分子对接结果得知结合作用会对溶菌酶的活性产生影响。  相似文献   

8.
通过酶动力学研究探索2种食品添加剂(没食子酸丙酯和L-抗坏血酸棕榈酸酯)对酪氨酸酶的抑制作用,并借助分子对接技术探究二者与酪氨酸酶间的结合方式。结果表明:没食子酸丙酯对酪氨酸酶是可逆混合型抑制,其IC50=(18.036±0.823)mmol/L;L-抗坏血酸棕榈酸酯为可逆反竞争性抑制,其IC50=(2.806±0.082)mmol/L。分子对接结果表明,2种食品添加剂与酪氨酸酶间主要以氢键、范德华力相互作用。本试验拓展了酪氨酸酶抑制剂的研究方向,并为食品添加剂在酶抑制剂领域的应用提供参考。  相似文献   

9.
王亚杰  张国文 《食品科学》2014,35(13):143-146
在磷酸盐缓冲体系(pH 7.5)中,利用紫外光谱法、荧光光谱法和圆二色谱法,结合分子模拟技术研究了桑色素对黄嘌呤氧化酶(xanthine oxidase,XO)活性的抑制机理。结果表明:桑色素是一种有效的可逆性混合型抑制剂,其半数抑制浓度(IC50)和抑制常数(Ki)分别为1.35×10–5 mol/L和1.21×10–5 mol/L;桑色素通过疏水作用力与XO形成基态复合物导致XO内源荧光的猝灭,并诱导XO的二级结构发生改变;分子模拟结果进一步证实桑色素主要通过疏水作用力结合到XO的活性中心,与Phe914、Phe649、Phe1009、Leu648、Leu1014和Leu873等主要氨基酸发生作用。推测桑色素进入XO的疏水腔,阻碍了底物黄嘌呤进入XO活性中心并影响了XO活性中心的形成,从而抑制了XO对黄嘌呤的催化活性。  相似文献   

10.
磷酸酶是参与水产品鲜味物质肌苷酸(IMP)的降解途径中的关键酶,以海鲈鱼肝中酸性磷酸酶为研究对象,通过同源建模、分子对接等手段,从中药化合物中虚拟筛选出ACP抑制剂,并研究其抑制机理。结果表明:苯甲酸、槲皮素、十六烷二酸、二氢白藜芦醇具有很强的抑制磷酸酶活性作用。选取抑制效果最好的十六烷二酸结合荧光光谱分析,结果表明:氢键和范德华力是十六烷二酸与ACP结合的主要驱动力,同时导致ACP荧光强度降低,最大发射波长红移。十六烷二酸与ACP的活性中心结合,使ACP二维和三维结构发生变化,降低了ACP与IMP的接触,可延缓IMP降解。  相似文献   

11.
酪氨酸酶是果蔬褐变和黑色素生物合成过程中的关键酶,酪氨酸酶抑制剂在果蔬保鲜和医药领域具有重要意义。该文首次研究了利巴韦林的抗酪氨酸酶活性、机制及其对贡梨鲜切梨块和梨汁的保鲜效果。酶动力学实验的结果表明,利巴韦林是高效、可逆、竞争型的酪氨酸酶抑制剂,其IC50为(0.3±0.05)mmol/L。荧光淬灭和非辐射能量转移实验的结果表明,利巴韦林可静态淬灭酪氨酸酶的内源荧光,且通过1个结合位点与酪氨酸酶形成“利巴韦林-酶”复合物并导致酶的构象发生改变,这一过程伴随着非辐射能量转移。分子对接的结果表明,利巴韦林可以嵌入到酪氨酸酶的活性口袋并与其B链上的6个氨基酸残基(Lys379、Gln356、Gln307、Asp312、Val313、Asn310)形成氢键。贡梨保鲜实验表明,利巴韦林可以有效减少鲜切梨块的失重率和降低梨汁的褐变度。该研究结果为开发新型的果蔬保鲜剂提供了理论依据和实践基础。  相似文献   

12.
通过测定槲皮素对胰蛋白酶催化活性、催化反应动力学以及内源荧光光谱的影响,对槲皮素和胰蛋白酶相互作用特性进行研究.结果表明:槲皮素对胰蛋白酶催化活性有明显的抑制作用,当槲皮素与胰蛋白酶的摩尔比为44∶1,在37℃反应10min,抑制率达到32.5%;反应时间对两者的作用影响并不明显;槲皮素对胰蛋白酶催化活性的抑制作用属于可逆的竞争性抑制;槲皮素可使胰蛋白酶的内源荧光发生猝灭现象,猝灭常数Kq是4.7415×1012 (mol/L)1·S-1,猝灭类型为静态猝灭,结合位点数N为0.9206.  相似文献   

13.
This study aims to investigate the effects of two flavonoids, rutin and quercetin, on inhibitory activity of recombinant buckwheat trypsin inhibitor (rBTI). We found that rutin and quercetin could quench the florescence of rBTI through the static quenching process. We also observed that upon binding to rutin or quercetin, rBTI underwent conformational changes. The results also suggested that rutin and quercetin bind to two different sites on rBTI through different interactions: rutin binds to rBTI through van der Waals forces and hydrogen bonds, whereas quercetin binds through hydrophobic interactions. Rutin and quercetin also markedly deactivated the trypsin inhibitory activity (TIA) of rBTI, while quercetin exhibited higher inactivation effect on rBTI than rutin due to its structure. Finally, the molecular docking revealed the molecular binding between the flavonoids and rBTI. These findings can be useful for the understanding of how flavonoid affects the inhibitory of rBTI.  相似文献   

14.
橙皮苷、柚皮苷与酪蛋白相互作用机制比较分析   总被引:1,自引:0,他引:1  
采用荧光光谱、同步荧光光谱结合热力学参数分析及分子对接比较研究酪蛋白(casein,CA)与橙皮苷(hesperidin,HES)及柚皮苷(naringin,NAR)之间的相互作用及机制,结果表明:两种多酚对CA的猝灭均为静态猝灭,但HES对CA的荧光猝灭效果及结合亲和力较强,且CA与HES的结合位点数较多。热力学参数证明CA与HES、NAR的结合均为以疏水作用力为主的自发反应。同步荧光光谱显示,两种多酚的加入引起了CA氨基酸内部疏水环境的改变。分子对接进一步证实,两种多酚与CA的结合主要以疏水作用力为主,但HES与CA间存在更多的氢键作用,并使HES与CA之间结合得更为稳定。本研究可为多酚与蛋白质间的相互作用研究以及CA作为黄酮类多酚载体的可行性提供参考依据。  相似文献   

15.
目的:研究半乳甘露聚糖对人血清白蛋白(HSA)光谱特性的影响及它们相互作用的机理。方法:本文利用光谱法判断半乳甘露聚糖和HSA的猝灭方式、结合位点数、结合作用力类型以及二级结构的变化,采用分子对接模拟技术得到结合作用力类型和长度,进一步研究半乳甘露聚糖和HSA相互作用的机制。结果:在半乳甘露聚糖的作用下,HSA内源荧光被有规律的猝灭,猝灭过程是自发进行的,机制为静态猝灭,结合位点数约为1,并且HSA的二级结构中α-螺旋含量减少了7.7%。分子对接结果表明,半乳甘露聚糖通过氢键和范德华力在HSA的亚结构域IIB中相互作用。结论:半乳甘露聚糖与HSA有较强的结合能力,并且结合是自发进行的。  相似文献   

16.
The aim of this study was to investigate the inhibitory mechanism of oenothein B (OeB), a unique oligomer ellagitannin with a rigid structure, on porcine trypsin using fluorescence spectroscopy, isothermal titration calorimetry (ITC), circular dichroism (CD) and molecular docking. Trypsin activity was strongly inhibited by OeB in a competitive way. Fluorescence quenching of trypsin by OeB was a static quenching. The CD spectra showed that binding of OeB to trypsin altered trypsin's conformation. The ITC and docking studies revealed that the inhibitory mechanism of OeB occurred via binding to the interior hydrophobic groups of trypsin and the formation of hydrogen bonds with trypsin through binding to the amino acid residues Asn97, His573, Ser195 and Gln192. This study provides a theoretical and computational basis for the precise control of trypsin in food industry. Based on the results, OeB may be used in food technology research as novel bioactive trypsin inhibitor.  相似文献   

17.
Quercetin, the primary dietary flavonol, exerts a strong inhibitory effect on calcineurin (CN), a unique Ca2+/calmodulin-dependent serine/threonine protein phosphatase. Using fluorescence spectroscopy (FS) we showed quercetin strongly bound to calcineurin catalytic subunit (CNA) with a ratio of 1:1; we also showed that calcineurin regulatory subunit (CNB) weakened this binding. In addition, the secondary structure of CNA was much tighter in the presence of quercetin. An FS study with CNA truncated mutant CNAa showed that the binding area for quercetin was reduced to the catalytic domain of CNA. Furthermore, fluorescence resonance energy transfer (FRET) results and molecular docking indicated three potential binding sites for quercetin, which were located at a region between the active centre of CNA and the CNB binding domain, a similar binding area to that of cyclosporin A and tacrolimus. Interestingly, this region was also important for CN substrate recognition.  相似文献   

18.
本文主要探讨了2',4'-二羟基-6'-甲氧基-3',5'-二甲基查耳酮(2',4'-dihydroxy-6'-methoxy-3',5'-dimethylchalcone,DMC)对胰脂肪酶(Pancreatic Lipase,PL)的抑制作用及作用机理。以4-硝基苯丁酸酯为底物,采用对硝基苯酚法检测DMC对PL活性的影响,采用紫外光谱法、荧光光谱法以及分子对接法研究DMC与PL的相互作用。结果表明:DMC对PL有抑制作用,半数抑制浓度为50.01±3.56 μmol/L,酶动力研究表明DMC是PL的竞争型抑制剂;光谱实验结果显示DMC的加入使PL发生了荧光猝灭,猝灭类型为动态猝灭;同步荧光及三维荧光实验表明DMC不会改变PL构象;热力学参数ΔG<0,两者的相互作用是自发进行,ΔH<0,ΔS<0,表明DMC与PL的相互作用力主要为氢键和范德华力;分子对接实验进一步验证了以上结果。由此可见,DMC具有作为PL抑制剂的潜能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号