首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
We present simulation and experimental results from a 5-MHz, 256times256 2-D (65536 elements, 38.4times38.4 mm) 2-D array transducer with row-column addressing. The main benefits of this design are a reduced number of interconnects, a modified transmit/receive switching scheme with a simple diode circuit, and an ability to perform volumetric imaging of targets near the transducer with transmit beamforming in azimuth and receive beamforming in elevation. The final dimensions of the transducer were 38.4 mm times 38.4 mm times 300 mum. After a row-column transducer was prototyped, the series resonance impedance was 104 Omega at 5.4 MHz. The measured -6 dB fractional bandwidth was 53% with a center frequency of 5.3 MHz. The SNR at the transmit focus was measured to be 30 dB. At 5 MHz, the average nearest neighbor crosstalk was -25 dB. In this paper, we present 3-D images of both 5 pairs of nylon wires embedded in a clear gelatin phantom and an 8 mm diameter cylindrical anechoic cyst phantom acquired from a 256 times 256 2-D array transducer made from a 1-3 composite. We display the azimuth and elevation B-scans as well as the C-scan for each image. The cross-section of the wires is visible in the azimuth B-scan, and the long axes can be seen in the elevation B-scan and C-scans. The pair of wires with 1-mm axial separation is discernible in the elevational B-scan. When a single wire from the wire target phantom was used, the measured lateral beamwidth was 0.68 mm and 0.70 mm at 30 mm depth in transmit beamforming and receive beamforming, respectively, compared with the simulated beamwidth of 0.55 mm. The cross-section of the cyst is visible in the azimuth B-scan whereas the long axes can be seen as a rectangle in the elevation B-scan and C-scans.  相似文献   

2.
State-of-the-art 3-D medical ultrasound imaging requires transmitting and receiving ultrasound using a 2-D array of ultrasound transducers with hundreds or thousands of elements. A tight combination of the transducer array with integrated circuitry eliminates bulky cables connecting the elements of the transducer array to a separate system of electronics. Furthermore, preamplifiers located close to the array can lead to improved receive sensitivity. A combined IC and transducer array can lead to a portable, high-performance, and inexpensive 3-D ultrasound imaging system. This paper presents an IC flip-chip bonded to a 16 x 16-element capacitive micromachined ultrasonic transducer (CMUT) array for 3-D ultrasound imaging. The IC includes a transmit beamformer that generates 25-V unipolar pulses with programmable focusing delays to 224 of the 256 transducer elements. One-shot circuits allow adjustment of the pulse widths for different ultrasound transducer center frequencies. For receiving reflected ultrasound signals, the IC uses the 32-elements along the array diagonals. The IC provides each receiving element with a low-noise 25-MHz-bandwidth transimpedance amplifier. Using a field-programmable gate array (FPGA) clocked at 100 MHz to operate the IC, the IC generated properly timed transmit pulses with 5-ns accuracy. With the IC flip-chip bonded to a CMUT array, we show that the IC can produce steered and focused ultrasound beams. We present 2-D and 3-D images of a wire phantom and 2-D orthogonal cross-sectional images (Bscans) of a latex heart phantom.  相似文献   

3.
A catheter device with integrated ultrasound imaging array and ultrasound ablation transducer is introduced. This device has been designed for use in interventional cardiac procedures in which the cardiac anatomy is first imaged using real-time three-dimensional (3-D) ultrasound, then ablated to treat arrhythmias. The imaging array includes 112 elements operating at 5.4 MHz arranged in a 2-D matrix. Individual elements have a bandwidth of 21% and an insertion loss of 80 dB. The array has an azimuth resolution of 12 degrees and an elevation resolution of 8.7 degrees. The ablation transducer is a concentric piezoelectric transducer PZT-4 ring (outside diameter (O.D.), 4.5 mm, inside diameter (I.D.), 3.1 mm) operating at 10 MHz that surrounds the imaging array. It can produce a spatial-peak, temporal-average intensity up to 16 W/cm2. The entire device fits into a 9 Fr lumen with a 14 Fr tip to accommodate the ablation ring. With this device we have imaged, in realtime 3-D, a variety of targets including wire phantoms, fixed sheep hearts, and fresh bovine tissue. The ablation ring has been used to heat tissue-mimicking rubber 14 degrees C, as well as create lesions in fresh bovine tissue.  相似文献   

4.
Synthetic aperture techniques with a virtual source element   总被引:1,自引:0,他引:1  
A new imaging technique has been proposed that combines conventional B-mode and synthetic aperture imaging techniques to overcome the limited depth of field for a highly focused transducer. The new technique improves lateral resolution beyond the focus of the transducer by considering the focus a virtual element and applying synthetic aperture focusing techniques. In this paper, the use of the focus as a virtual element is examined, considering the issues that are of concern when imaging with an array of actual elements: the tradeoff between lateral resolution and sidelobe level, the tradeoff between system complexity (channel count/amount of computation) and the appearance of grating lobes, and the issue of signal to noise ratio (SNR) of the processed image. To examine these issues, pulse-echo RF signals were collected for a tungsten wire in degassed water, monofilament nylon wires in a tissue-mimicking phantom, and cyst targets in the phantom. Results show apodization lowers the sidelobes, but only at the expense of lateral resolution, as is the case for classical synthetic aperture imaging. Grating lobes are not significant until spatial sampling is more than one wavelength, when the beam is not steered. Resolution comparable to the resolution at the transducer focus can be achieved beyond the focal region while obtaining an acceptable SNR. Specifically, for a 15-MHz focused transducer, the 6-dB beamwidth at the focus is 157 mum, and with synthetic aperture processing the 6-dB beamwidths at 3, 5, and 7 mm beyond the focus are 189 mum, 184 mum, and 215 mum, respectively. The image SNR is 38.6 dB when the wire is at the focus, and it is 32.8 dB, 35.3 dB, and 38.1 dB after synthetic aperture processing when the wire is 3, 5, and 7 mm beyond the focus, respectively. With these experiments, the virtual source has been shown to exhibit the same behavior as an actual transducer element in response to synthetic aperture processing techniques.  相似文献   

5.
张友文  孙大军  田坦 《声学技术》2006,25(4):271-275
基于两步处理算法和ChirpScaling算法,提出一种适用于条带式成像算法的通用高分辨聚束式合成孔径声呐(SAS)模型。该模型结合了谱分析(SPECAN)算法和ChirpScaling算法的优点,算法首先采用deramp和升采样处理技术实现方位的粗聚焦,消除了聚束式SAS特有的方位频谱混迭现象,然后应用ChirpScaling原理实现距离的精确聚焦,并补偿deramp处理引起的方位相位误差,实现方位精聚焦。基于该通用模型,给出了实现的步骤,整个算法无需任何插值操作,只需复乘和FFT即可完成。该算法适用于宽测绘带高分辨率聚束式SAS的精确而高效成像处理。最后,通过计算机仿真,验证了该通用模型的有效性。  相似文献   

6.
The computational predictions for the imaging potential of the second harmonic produced by finite amplitude distortion were investigated with a simple experiment. A focused transducer containing concentric 2.5 MHz and 5.0 MHz elements was used to obtain a sequence of radio-frequency (r-f) backscattered signals using a tissue equivalent phantom. The 2.5 MHz element was used as the transmitter and the 5.0 MHz element was used as the receiver. At 0.68 cm in front of the geometric focal point of the transducer, the phantom contained a 0.6 cm diameter cylindrical volume which contained no scatterers. Each of these r-f signals was then processed to produce the corresponding fundamental (2.5 MHz-centered) and second harmonic (5.0 MHz-centered) envelopes. The contrast resolution obtained for the scatterer-free or cyst region of the envelopes was compared against the computed prediction and good agreement was obtained. The results of this experiment also suggest that the simple one-pulse scheme may be adequate for second harmonic imaging.  相似文献   

7.
Conventional linear arrays can be used for 3-D ultrasound imaging by moving the array in the elevation direction and stacking the planes in a volume. The point-spread function is larger in the elevation plane, because the aperture is smaller and has a fixed elevation focus. Resolution improvements in elevation can be achieved by applying synthetic aperture focusing to the beamformed-in-plane RF data. The proposed method uses a virtual source placed at the elevation focus for postbeamforming. This has previously been done in 2 steps, in-plane focusing followed by synthetic aperture post-focusing in elevation, due to lack of a simple expression for the exact time of flight. This paper presents a new single step method for calculating the time of flight for a 3-D case using a linear array. The new method is more flexible and is able to beamform a fewer number of points much more efficiently. The method is evaluated using both simulated data and phantom measurements using the RASMUS experimental scanner. Computational cost of the method is higher than the 2-step method for a full volume beamforming, but it allows for a reduction of an order-of-magnitude if 3 planes are used for real-time visualization. In addition, the need for a temporary storage of beamformed data is removed.  相似文献   

8.
Current commercial ultrasound blood flow measurement systems only measure the axial component of the true blood flow velocity vector. In order to overcome this limitation, a technique which tracks blood cell scatterers as they move between three ultrasound beams has been developed. With this technique, the entire 3-D blood flow velocity vector can be estimated. Previous work has presented the theory behind the technique, lens transducer design and construction, as well as results of computer simulations and preliminary experimental results. This work presents the first experimental results obtained with a prototype system for continuous, fully developed flow in a flow phantom under a wide range of flow rates and flow directions. The results indicate that the accurate measurement of the 3-D flow velocity vector using this technique is possible.  相似文献   

9.
An approach for acquiring dimensionally accurate three-dimensional (3-D) ultrasound data from multiple 2-D image planes is presented. This is based on the use of a modified linear-phased array comprising a central imaging array that acquires multiple, essentially parallel, 2-D slices as the transducer is translated over the tissue of interest. Small, perpendicularly oriented, tracking arrays are integrally mounted on each end of the imaging transducer. As the transducer is translated in an elevational direction with respect to the central imaging array, the images obtained by the tracking arrays remain largely coplanar. The motion between successive tracking images is determined using a minimum sum of absolute difference (MSAD) image matching technique with subpixel matching resolution. An initial phantom scanning-based test of a prototype 8 MHz array indicates that linear dimensional accuracy of 4.6% (2 /spl sigma/) is achievable. This result compares favorably with those obtained using an assumed average velocity [31.5% (2 /spl sigma/) accuracy] and using an approach based on measuring image-to-image decorrelation [8.4% (2 /spl sigma/) accuracy]. The prototype array and imaging system were also tested in a clinical environment, and early results suggest that the approach has the potential to enable a low cost, rapid, screening method for detecting carotid artery stenosis. The average time for performing a screening test for carotid stenosis was reduced from an average of 45 minutes using 2-D duplex Doppler to 12 minutes using the new 3-D scanning approach.  相似文献   

10.
This is the second part of a two-paper series reporting a recent effort in the development of a high-frequency annular array ultrasound imaging system. In this paper an imaging system composed of a six-element, 43 MHz annular array transducer, a six-channel analog front-end, a field programmable gate array (FPGA)-based beamformer, and a digital signal processor (DSP) microprocessor-based scan converter will be described. A computer is used as the interface for image display. The beamformer that applies delays to the echoes for each channel is implemented with the strategy of combining the coarse and fine delays. The coarse delays that are integer multiples of the clock periods are achieved by using a first-in-first-out (FIFO) structure, and the fine delays are obtained with a fractional delay (FD) filter. Using this principle, dynamic receiving focusing is achieved. The image from a wire phantom obtained with the imaging system was compared to that from a prototype ultrasonic backscatter microscope with a 45 MHz single-element transducer. The improved lateral resolution and depth of field from the wire phantom image were observed. Images from an excised rabbit eye sample also were obtained, and fine anatomical structures were discerned.  相似文献   

11.
This paper reports on estimating the 3-D flow velocity vector of blood with ultrasound triple-beam lens transducers. The design, construction, and characterization of experimental lens transducers is described along with the theory of 3-D flow velocity estimation. A triple beam lens transducer consists of three piezoelectric elements mounted on the top surface of a lens. The lens acts to direct and focus the ultrasound from the elements such that three parallel, closely spaced ultrasound beams are generated. Blood cell scatterers are tracked as they move along the beams and from beam to beam using RF correlation techniques. Lenses from fused quartz and aluminum have been designed and fabricated, and the characteristics of the lenses along with lens design considerations and tradeoffs are discussed. The three-dimensional flow velocity vector of fluid in a blood flow phantom has been experimentally measured with an aluminum lens, indicating that the accurate estimation of the 3-D blood flow velocity vector is possible  相似文献   

12.
Power spectrum equalization for ultrasonic image restoration   总被引:2,自引:0,他引:2  
A method of image restoration for ultrasonic B-scan images has been proposed that need no a priori knowledge on the PSF (point spread function) of the imaging system and is feasible for in vivo applications. The entire system's response, including the interposed medium and possible transducer defects, is estimated from the degraded image itself with a few simple operations. The ultrasonic image is restored based only on a knowledge of the estimated PSF and on the spectral characteristics of the resultant echo signal. The proposed method does not modify the phase relations between echoes from multiple scatterers since the restoration filter is phaseless and the display operation does not involve nonlinear detection. The effectiveness of the restoration filter was tested on simulated ultrasonic images in the absence and in the presence of interposed tissue. Then the filter was tested on a phantom made of scatterers randomly distributed in nonattenuating gel with and without an interposed medium whose attenuation linearly increases with frequency. A good correspondence between simulations and experimental results was found: both tests show an exceptional improvement of image resolution.  相似文献   

13.
Spatial resolution of an ultrasound image is limited by diffraction of ultrasound as it propagates along the axial direction. This paper proposes a method for reducing the diffraction spreading effect of ultrasound by using a synthetic aperture focusing (SAF) method that uses plane waves instead of spherical waves. The new method performs data acquisition and beamforming in the same manner as conventional SAF methods. The main difference is that all array elements are used on each firing to generate a plane wave, the traveling angle of which varies with the position of a receive subaperture. On reception, each scan line is formed by synthesizing RF samples acquired by relevant receive subapertures with delays to force the plane waves to meet at each imaging point. Theoretical analysis and computer simulation with infinite transmit aperture show that the proposed method is capable of suppressing the diffraction of ultrasound and especially causing the lateral beam width to remain unchanged beyond a certain depth determined by the size of a receive subaperture and the maximum traveling angle of plane waves. It is demonstrated that the proposed method is realizable using a linear array transducer. It is also shown that the lateral radiation pattern produced by the proposed method has smaller beam width than that using conventional SAF methods in the region of interest because it suppresses the diffraction of ultrasound.  相似文献   

14.
Sound-velocity inhomogeneities degrade both the spatial resolution and the contrast in diagnostic ultrasound. We previously proposed an adaptive imaging approach based on the coherence of the data received in the channels of a transducer array, and we tested it on phantom data. In this study, the approach was tested on clinical breast data and compared with a correlation-based method that has been widely reported in the literature. The main limitations of the correlation-based method in ultrasonic breast imaging are the use of a near-field, phase-screen model and the integration errors due to the lack of a two-dimensional (2-D) array. In contrast, the proposed coherence-based method adaptively weights each image pixel based on the coherence of the receive-channel data. It does not make any assumption about the source of the focusing errors and has been shown to be effective using 1-D arrays. This study tested its in vivo performance using clinical breast data acquired by a programmable system with a 5 MHz, 128-channel linear array. Twenty-five cases (6 fibroadenomas, 10 carcinomas, 6 cysts, and 3 abscesses) were investigated. Relative to nonweighted imaging, the average improvements in the contrast ratio and contrast-to-noise ratio for the coherence-based method were 8.57 dB and 23.2%, respectively. The corresponding improvements when using the correlation-based method were only 0.42 dB and 3.35%. In an investigated milk-of-calcium case, the improvement in the contrast was 4.47 dB and the axial and lateral dimensions of the object were reduced from 0.39 to 0.32 mm and from 0.51 to 0.43 mm, respectively. These results demonstrate the efficacy of the coherence-based method for clinical ultrasonic breast imaging using 1-D arrays.  相似文献   

15.
A fast continuous rotating ultrasound scan-head transducer was used to perform three-dimensional (3-D) echocardiography with 2-D images acquired during a single cardiac cycle. The 3-D images were reconstructed by interpolating 2-D data acquired with the probe. Two experiments were carried out to validate the image reconstructions. A dynamic cardiac phantom was used as a known reference to compare the minimal and maximal volumes estimated manually on the reconstructed 3-D images. The left ventricle (LV) volume of 30 healthy volunteers also were estimated using a semiautomatic ellipse approach and compared to measurements obtained with standard 2-D examination. Results showed a good agreement between 3-D and reference measurements.  相似文献   

16.
This paper describes the development of a high-frequency 256-element linear ultrasonic array utilizing an interdigitally bonded (IB) piezo-composite. Several IB composites were fabricated with different commercial and experimental piezoelectric ceramics and evaluated to determine a suitable formulation for use in high-frequency linear arrays. It was found that the fabricated fine-scale 2-2 IB composites outperformed 1-3 IB composites with identical pillar- and kerf-widths. This result was not expected and lead to the conclusion that dicing damage was likely the cause of the discrepancy. Ultimately, a 2-2 composite fabricated using a fine-grain piezoelectric ceramic was chosen for the array. The composite was manufactured using one IB operation in the azimuth direction to produce approximately 19-μm-wide pillars separated by 6-μm-wide kerfs. The array had a 50 μm (one wavelength in water) azimuth pitch, two matching layers, and 2 mm elevation length focused to 7.3 mm using a polymethylpentene (TPX) lens. The measured pulse-echo center frequency for a representative array element was 28 MHz and -6-dB bandwidth was 61%. The measured single-element transmit -6-dB directivity was estimated to be 50°. The measured insertion loss was 19 dB after compensating for the effects of attenuation and diffraction in the water bath. A fine-wire phantom was used to assess the lateral and axial resolution of the array when paired with a prototype system utilizing a 64-channel analog beamformer. The -6-dB lateral and axial resolutions were estimated to be 125 and 68 μm, respectively. An anechoic cyst phantom was also imaged to determine the minimum detectable spherical inclusion, and thus the 3-D resolution of the array and beamformer. The minimum anechoic cyst detected was approximately 300 μm in diameter.  相似文献   

17.
变孔径环形超声换能器的聚焦性能仿真研究   总被引:2,自引:0,他引:2       下载免费PDF全文
陶维亮  马志敏  刘艳 《声学技术》2007,26(2):330-334
在河工模型地形测量应用中,为适应提高方位向分辨率和减小盲区的要求,提出一种变孔径环形超声换能器的设计,并分析了该换能器的聚焦性能及其随目标点距离变化的情况。该换能器使用环形结构,能得到方位向的高分辨率,提高地形成像的质量;利用变孔径技术,又保证在对较大起伏地形进行成像时,保持了最佳的显示效果。分析结果表明,设计的超声换能器在提供较高方位向分辨率的同时,有效地减小了近场盲区,满足河工模型地形测量的要求,并为其它成像系统和医学应用提供参考。  相似文献   

18.
We describe a phase aberration correction method that uses dynamic ultrasound radiation force to harmonically vibrate an object using amplitude modulated continuous wave ultrasound. The phase of each element of an annular array transducer is adjusted to maximize the radiation force and obtain optimal focus of the ultrasound beam. The maximization of the radiation force is performed by monitoring the velocity of scatterers in the focus region. We present theory that shows focal optimization with radiation force has a well-behaved cost function. Experimental validation is shown by correction of manual defocusing of an annular array as well as correcting for a lens-shaped aberrator placed near the transducer. A Doppler laser vibrometer and a pulse-echo Doppler ultrasound method were used to monitor the velocity of a sphere used as a target for the transducer. By maximizing the radiation force-induced vibration of scatterers in the focal region, the resolution of the ultrasound beam can be recovered after aberration defocusing.  相似文献   

19.
Transducer design and phased array beam steering are developed for a volumetric ultrasound scanner that enables the 3-D visualization of dynamic structures in real time. The authors describe the design considerations and preliminary evaluation of a high-speed, online volumetric ultrasound imaging system that uses the principles of pulse-echo, phased array scanning with a 2-D array transducer. Several 2-D array designs are analyzed for resolution and main lobe-side lobe ratio by simulation using 2-D fast Fourier transform methods. Fabrication techniques are described for 2-D array transducer. Experimental measurements of pulse-echo point spread responses for 2-D arrays agree with the simulations. Measurements of pulse-echo sensitivity, bandwidth, and crosstalk are included  相似文献   

20.
矢量线阵二维波达方位估计的方法   总被引:1,自引:1,他引:1       下载免费PDF全文
赵微  李秀坤 《声学技术》2008,27(5):658-661
声矢量传感器南声压传感器和质点振速传感器组成,它可以空间共点、时间同步测量声场的声压标量和振速矢量信息。钏对声压线阵无法同时分辨目标的方位角和俯仰角,而三维矢量传感器线阵会带来成本的增加和工程应用上的困难.利用二维矢量传感器组成的直线阵对目标的二维波达方位进行联合估计,详细推导了矢量阵MUSIC算法的数学表达式,并着重对矢量线阵在三维坐标不同轴上时对方位估计的影响进行了研究。仿真结果表明二维矢量线阵布放在水平的X轴或Y轴上时存在方位模糊.而布放在垂直的Z轴上时可以实现全空间无模糊定向,且对双目标也有较高的分辨率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号