首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The objective of the project is to develop on-line, real-time, and noninvasive process control tools of coffee roasting that help deliver a consistent and high-quality coffee aroma. The coffee roasting process was analyzed by direct injection of the roaster gas into a time-of-flight mass spectrometer and ionized either by resonance enhanced multiphoton ionization (REMPI) at 266 and 248 nm or vacuum ultraviolet single-photon ionization (VUV-SPI) at 118 nm. The VUV ionization scheme allows detecting mainly the most volatile and abundant compounds of molecular mass below 100 m/z, while REMPI ionizes mainly aromatic compounds of molecular mass larger than 100 m/z. Combining the compounds ionized by resonant and single-photon ionization, approximately 30 volatile organic compounds are monitored in real time. Time-intensity profiles of 10 important volatile coffee compounds were discussed in connection with their formation chemistry during roasting. Applying multivariate statistics (principle component analysis) on time-intensity traces of nine volatile coffee compounds, the roasting degree could be traced as a consistent path in the score plot of the two most significant principle components (including 68% of the total variance), for a range of roasting temperatures (200-250 degrees C).  相似文献   

2.
A newly conceived compact and mobile time-of flight mass spectrometer (TOFMS) for real-time monitoring of highly complex gas mixtures is presented. The device utilizes two selective and sensitive soft ionization techniques, viz., resonance-enhanced multiphoton ionization (REMPI) and single-photon ionization (SPI) in a (quasi)-simultaneous mode. Both methods allow a fragmentationless ionization. The REMPI method selectively addresses aromatic species, while with SPI applying vacuum ultaviolet light (118 nm) in principle all compounds with an ionization potential below 10.5 eV are accessible. This provides comprehensive information of the chemical composition of complex matrixes. The combustion and pyrolysis behavior of five organic materials typically used in steel processing in China was studied. The trace amounts of organic compounds in the gas phase during combustion and pyrolysis were monitored selectively and sensitively by real-time SPI/REMPI-TOFMS. The measurements were carried out at several constant temperatures in the range from 300 to 1190 degrees C in both synthetic air and nitrogen. Timely resolved mass spectra reveal the formation and subsequent growth of aromatic molecules. At lower temperatures, highly alkylated PAHs predominate, while at temperatures above 800 degrees C, the more stable benzene and PAHs without side chains prevail. Potential hyphenation of SPI/REMPI-TOFMS to methods of thermal analysis is discussed.  相似文献   

3.
A newly developed compact and mobile time-of-flight mass spectrometer (TOFMS) for on-line analysis and monitoring of complex gas mixtures is presented. The instrument is designed for a (quasi-)simultaneous application of three ionization techniques that exhibit different ionization selectivities. The highly selective resonance-enhanced multiphoton ionization (REMPI) technique, using 266-nm UV laser pulses, is applied for selective and fragmentationless ionization of aromatic compounds at trace levels (parts-per-billion volume range). Mass spectra obtained using this technique show the chemical signature solely of monocyclic (benzene, phenols, etc.) and polycyclic (naphthalene, phenathrene, indol, etc.) aromatic species. Furthermore, the less selective but still fragmentationless single photon ionization (SPI) technique with 118-nm VUV laser pulses allows the ionization of compounds with an ionization potential below 10.5 eV. Mass spectra obtained using this technique show the profile of most organic compounds (aliphatic and aromatic species, like nonane, acetaldehyde, or pyrrol) and some inorganic compounds (e.g., ammonia, nitrogen monoxide). Finally, the nonselective ionization technique laser-induced electron-impact ionization (LEI) is applied. However, the sensitivity of the LEI technique is adjusted to be fairly low. Thus, the LEI signal in the mass spectra gives information on the inorganic bulk constituents of the sample (i.e., compounds such as water, oxygen, nitrogen, and carbon dioxide). Because the three ionization methods (REMPI, SPI, LEI) exhibit largely different ionization selectivities, the isolated application of each method alone solely provides specific mass spectrometric information about the sample composition. Special techniques have been developed and applied which allow the quasi-parallel use of all three ionization techniques for on-line monitoring purposes. Thus, a comprehensive characterization of complex samples is feasible jointly using the characteristic advantages of the three ionization techniques. Laboratory applications show results on rapid overview characterization of mineral oil-based fuels and coffee headspace. The first reported field applications include timely resolved on-line monitoring results on automobile exhausts and of waste incineration flue gas.  相似文献   

4.
Resonance-enhanced multiphoton ionization (REMPI) combined with time-of-flight mass spectrometry (TOFMS) is an analytical method capable of on-line monitoring of trace compounds in complex matrices. A necessary prerequisite for substance selective detection is spectroscopic investigation of the target molecules. Several organic nitrogen compounds comprising aliphatic and aromatic amines, nitrogen heterocyclic compounds, and aromatic nitriles are spectroscopically investigated with a tunable narrow bandwidth optical parametric oscillator (OPO) laser system providing a scannable wavelength range between 220 and 340 nm. These species are known as possible precursors in fuel-NO formation from combustion of solid fuels such as biomass and waste. A newly conceived double inlet system was used in this study, which allows rapid change between effusive and supersonic molecular beams. The resulting REMPI spectra of the compounds are discussed with respect to electronic transitions that could be utilized for a selective ionization of these compounds in complex mixtures such as combustion and process gases. The practicability of this approach is demonstrated by wavelength selected on-line REMPI-TOFMS detection of aniline and cyanonaphthalene in the burning chamber of a waste incineration plant. REMPI mass spectra recorded at different excitation wavelengths as well as variations in time show the utilization of species-selective REMPI-TOFMS detection for on-line monitoring of crucial substances in pollutant formation.  相似文献   

5.
The kinetics of oxidation of perchloroethylene (PCE), trichloroethylene (TCE), three isomers of dichloroethylene (DCE) and vinyl chloride (VC) by potassium permanganate (KMnO(4)) were studied in phosphate-buffered solutions of pH 7 and ionic strength approximately 0.05 M and under isothermal, completely mixed and zero headspace conditions. Experimental results have shown that the reaction appears to be second order overall and first order individually with respect to both KMnO(4) and all chlorinated ethenes (CEs), except VC. The degradation of VC by KMnO(4) is a two-consecutive-step process. The second step, being the rate-limiting step, is of first order in VC and has an activation energy (E(a)) of 7.9+/-1 kcal mol(-1). The second order rate constants at 20 degrees C are 0.035+/-0.004 M(-1) s(-1) (PCE), 0.80+/-0.12 M(-1) s(-1) (TCE), 1.52+/-0.05 M(-1) s(-1) (cis-DCE), 2.1+/-0.2 M(-1) s(-1) (1,1-DCE) and 48.6+/-0.9 M(-1) s(-1) (trans-DCE). The E(a) and entropy (DeltaS(*)) of the reaction between KMnO(4) and CEs (except VC) are in the range of 5.8-9.3 kcal mol(-1) and -33 to -36 kcal mol(-1) K(-1), respectively. Moreover, KMnO(4) is able to completely dechlorinate CEs, and the increase in acidity of the solution due to CE oxidation by KMnO(4) is directly proportional to the number of chlorine atoms in CEs.  相似文献   

6.
Ferrous iron (Fe(II)) in combination with Portland cement is effective in reductively dechlorinating chlorinated organics and can be used to achieve immobilization and degradation of contaminants simultaneously. Reactivities of chlorinated ethylenes (perchloroethylene (PCE), trichloroethylene (TCE), 1,1-dichloroethylene (1,1-DCE), vinyl chloride (VC)) in Fe(II)/cement systems were characterized using batch slurry reactors. Reduction kinetics of the chlorinated ethylenes were sufficiently fast to be utilized for the proposed treatment scheme, and were described by a pseudo-first-order rate law. The order of reactivity of the chlorinated ethylenes was TCE>1,1-DCE>PCE>VC. Reduction of TCE and PCE mainly yielded acetylene, implying that the transformation of the two compounds occurred principally via reductive beta-elimination pathways. Transformation of 1,1-DCE and VC gave rise to primarily ethylene, implying that major degradation pathways were a reductive alpha-elimination for the former and a hydrogenolysis for the latter. The reactivity of the Fe(II)/cement systems in dechlorinating TCE was proportional to Fe(II) dose when the Fe(II)/cement mass ratio varied between 5.6 and 22.3%. The Fe(II)/cement systems with a higher Fe(II) loading were less extensively affected by pH in reductive reactions for TCE than in the previous experiments with PCE or chlorinated methanes. Amendment of Fe(II)/cement systems with Fe(III) addition was found effective in increasing the reactivity in the previous study, but the current findings indicated that the extent to which the reaction rate increased by the amendment might be dependent on the source of the cement and/or the compounds tested.  相似文献   

7.
Emulsion-based remediation with biodegradable vegetable oils was investigated as an alternative technology for the treatment of subsurface DNAPLs (dense non-aqueous phase liquids) such as TCE (trichloroethylene) and PCE (perchloroethylene). Corn and olive oil emulsions obtained by homogenization at 8000rpm for 15min were used. The emulsion droplets prepared with corn and olive oil gave a similar size distribution (1-10microm) and almost all of initially injected oil, >90%, remained in a dispersed state. In batch experiments, 2% (v/v) oil emulsion could adsorb up to 11,000ppm of TCE or 18,000ppm of PCE without creating a free phase. Results of one-dimensional column flushing studies indicated that contaminants with high aqueous solubility could be efficiently removed by flushing with vegetable oil emulsions. Removal efficiencies exceeded 98% for TCE and PCE with both corn and olive oil emulsions. The results of this study show that flushing with biodegradable oil emulsion can be used for the remediation of groundwater contaminated by DNAPLs.  相似文献   

8.
Resonance-enhanced multiphoton ionization time-of-flight mass spectrometry (REMPI-TOFMS) is a powerful technique for the on-line analysis of aromatic compounds with unique features regarding selectivity and sensitivity. Aliphatic compounds, however, are difficult to address by REMPI due to their unfavorable photo ionization properties. This paper describes the proof of concept for an on-line derivatization approach for converting nonaromatic target analytes into specific, photoionizable aromatic derivatives that are readily detectable by REMPI-TOFMS. A multichannel silicone trap or poly(dimethylsiloxane) (PDMS) open tubular capillary was used as a reaction medium for the derivatization of volatile alkyl aldehydes and alkylamines with aromatic "photoionization labels"and to concentrate the resulting aromatic derivatives. The aldehydes formaldehyde, acetaldehyde, acrolein, and crotonal, which when underivatized are poorly detectable by REMPI, were converted into their easily photoionizable phenylhydrazone derivatives by the on-line reaction with phenylhydrazine as reagent. Similarly, the methyl-, ethyl-, propyl-, and butylamines were converted into their REMPI-ionizable benzaldehyde alkylimine derivatives by the on-line reaction with benzaldehyde as reagent. The derivatives were thermally desorbed from the PDMS matrix and transferred into the REMPI-TOFMS for detection. The REMPI-TOFMS detection limits obtained for acetaldehyde; acrolein; crotonal; and methyl-, ethyl-, propyl-, and butylamine using this photo ionization labeling method were in the sub-parts-per-million range and, thus, readily below the permissible exposure limits set by OSHA.  相似文献   

9.
This paper reports on a newly developed mobile mass spectrometer for comprehensive on-line analysis of complex gas mixtures such as ambient air or industrial process gases. Three ionization methods, namely, the resonance-enhanced multiphoton ionization (REMPI), vacuum-ultraviolet single-photon ionization (SPI), and electron impact ionization (EI) are implemented in this instrument and can be operated (quasi-) simultaneously. By means of this setup, a wide range of compounds can be analyzed due to the unique ionization selectivitiy and sensitivity profiles provided by the different ionization techniques. The mass spectrometer is designed for field application even under severe conditions. The REMPI technique is suitable for the selective and soft ionization (without fragmentation) of aromatic compounds at trace level (ppbv/pptv). The also soft but less selective SPI technique with 118-nm vacuum-ultraviolet laser pulses is used as a second laser-based ionization method. Mass spectra obtained by this technique show profiles of most organic compounds (aliphatic and aromatic species) and of some low IP inorganic substances (e.g., ammonia, nitrogen oxide) down to ppbv concentrations. In addition to the laser-based ionization techniques, EI ionization can be used for analysis of the bulk components such as water, oxygen, nitrogen, and carbon dioxide as well as for detection of inorganic minor components such as HCN or HCl from combustion flue gases at ppmv concentration levels. Each method yields specific mass spectrometric information of the sample composition. Special techniques have been developed to combine the three ionization methods in a single mass spectrometer and to allow the quasi-parallel application of all three ionization techniques.  相似文献   

10.
Immobilization of chlorinated solvents with hydropropyl and methyl cyclodextrins (CDs) was observed by head-space analysis to obtain the stability constants in single and multiple component systems. In each single component system, the highest stability constant was 0.299 mM(-1) for perchloroethylene (PCE) by methyl-beta-cyclodextrin (M-beta-CD), 0.136 mM(-1) for trichloroethylene (TCE) by M-beta-CD, 0.106 mM(-1) for cis-dichloroethylene (cis-DCE) by hydropropyl-alpha-cyclodextrin, and 0.090 mM(-1) for trans-dichloroethylene (trans-DCE) by M-beta-CD. When HP-beta-CD and M-beta-CD were used, the stability constants of PCE and TCE increased and those of DCEs decreased in a multiple component system. Differences in stability constants of single and multiple component systems thus should be important parameters when cyclodextrins are applied to solubilization of multiple chlorinated solvents.  相似文献   

11.
We have combined resonance-enhanced multiphoton ionization (REMPI) time-of-flight mass spectrometry with on-line flame sampling to determine the centerline concentrations of naphthalene, fluorene, and anthracene in a pure methane + oxygen/argon (1:5) diffusion flame. Naphthalene concentrations between 100 parts per billion by volume (ppbV) and 6 parts per million by volume (ppmV) and fluorene concentrations below 50 ppbV are determined using one-color REMPI on jet-cooled samples extracted from the flame; anthracene concentrations in the 5-40 ppbV range are determined using two-color REMPI. The REMPI ion signals are converted to absolute concentrations in real time by performing gas-phase standard additions to the flame sample. Isomer-selective detection of larger polycyclic aromatic hydrocarbons, such as perylene and benzo[a]pyrene, is possible using the two-color REMPI approach.  相似文献   

12.
A flame ionization detector (FID) is used to detect volatile organic compounds that have been separated by water-only reversed-phase liquid chromatography (WRP-LC). The mobile phase is 100% water at room temperature, without use of organic solvent modifiers. An interface between the LC and detector is presented, whereby a helium stream samples the vapor of volatile components from individual drops of the LC eluent, and the vapor-enriched gas stream is sent to the FID. The design of the drop headspace cell is simple because the water-only nature of the LC separation obviates the need to do any organic solvent removal prior to gas phase detection. Despite the absence of organic modifier, hydrophobic compounds can be separated in a reasonable time due to the low phase volume ratio of the WRP-LC columns. The drop headspace interface easily handles LC flows of 1 mL/min, and, in fact, compound detection limits are improved at faster liquid flow rates. The transfer efficiency of the headspace interface was estimated at 10% for toluene in water at 1 mL/min but varies depending on the volatility of each analyte. The detection system is linear over more than 5 orders of 1-butanol concentration in water and is able to detect sub-ppb amounts of o-xylene and other aromatic compounds in water. In order to analyze volatile and nonvolatile analytes simultaneously, the FID is coupled in series to a WRP-LC system with UV absorbance detection. WRP-LC improves UV absorbance detection limits because the absence of organic modifier allows the detector to be operated in the short-wavelength UV region, where analytes generally have significantly larger molar absorptivities. The selectivity the headspace interface provides for flame ionization detection of volatiles is demonstrated with a separation of 1-butanol, 1,1,2-trichloroethane (TCE), and chlorobenzene in a mixture of benzoic acid in water. Despite coelution of butanol and TCE with the benzoate anion, the nonvolatile benzoate anion does not appear in the FID signal, allowing the analytes of interest to be readily detected. The complementary selectivity of UV-visible absorbance detection and this implementation of flame ionization detection allows for the analysis of volatile and nonvolatile components of complex samples using WRP-LC without the requirement that all the components of interest be fully resolved, thus simplifying the sample preparation and chromatographic requirements. This instrument should be applicable to routine automated water monitoring, in which repetitive injection of water samples onto a gas chromatograph is not recommended.  相似文献   

13.
Fein A  Bernstein JS  Song XM  Cool TA 《Applied optics》1994,33(21):4889-4898
Resonance-enhanced multiphoton ionization (REMPI) detection of radical species in low-pressure laboratory flames is a promising tool for the development and refinement of combustion models. For accurate REMPI species concentration measurements in flame zones with inherently high background ionization levels, an understanding of the influence of plasma sheaths on REMPI probe response is required. Proper probe response is found to depend on careful control of probe-biasing and laserfocusing conditions. Only negatively biased probes are suitable, because of the influences of secondary ionization on the response of positively biased probes. In situ probe calibration procedures with the (2 + 2) REMPI of N(2) at 270.6 nm are described. Detection of O atoms in a stoichiometric 20-Torr methane-oxygen flame permits a precise comparison of both laser-induced fluorescence and REMPI measurements with flame-modeling results.  相似文献   

14.
The application of soft photoionization mass spectrometry methods (PIMS) for cigarette mainstream smoke analysis is demonstrated. Resonance-enhanced multiphoton ionization (REMPI) at 260 nm and vacuum ultraviolet light single-photon ionization (SPI) at 118 nm were used in combination with time-of-flight mass spectrometry (TOFMS). An optimized smoking machine with reduced memory effects of smoke components was constructed, which in combination with the REMPI/SPI-TOFMS instrument allows PIMS smoke analysis with a time resolution of up to 10 Hz. The complementary character of both PIMS methods is demonstrated. SPI allows the detection of various aliphatic and aromatic compounds in smoke up to approximately 120 m/z while REMPI is well suited for aromatic compounds. The capability of the instrument coupled to the novel sampling system for puff-by-puff resolved measurements is demonstrated. The feasibility of using the experimental system for intrapuff smoke measurements is also shown. Two main patterns of puff-by-puff behaviors are observed for different smoke constituents. The first group exhibits a constant increase in smoke constituent yield from the first to the last puff. The second group shows a high yield of the constituent in the first puff, with lower and constant or slowly increasing yields in the following puffs. A third group cannot be clearly classified and is a combination of both observed profiles.  相似文献   

15.
16.
A cap-shaped device was employed for headspace sampling. This sampling device coupled to membrane extraction with a sorbent interface (MESI) is intended to perform on-site and on-line aqueous sample monitoring. A laboratory sampling testwas performed both at the water surface and under water, and it showed some advantages in underwater monitoring. A group of volatile organic compounds (VOCs), varying in PDMS/gas and gas/water distribution constants, benzene, toluene, ethylbenzene, o-xylene, and trichloroethylene (TCE), was used for the sampling study. Magnetic stirring of the sample and circulation of the headspace air with a microfan were used for the enhancement of mass transfer between sample matrix and membrane to obtain higher extraction rate and efficiency. The agitation approaches were investigated individually and compared. The results showed that simultaneous agitation in water and air could greatly improve the extraction efficiency. Good linearity and precision and low detection limits were obtained for water-surface monitoring. The study demonstrated that Cap-MESI is a useful tool for field headspace monitoring of volatile organic compounds.  相似文献   

17.
In many analytical techniques, 1+1 resonance-enhanced multiphoton ionization (1+1 REMPI) is used because it is an efficient and optically selective soft ionization method. While 1+1 REMPI of jet-cooled molecules has been extensively studied, little has been reported so far about this mechanism as it is used in analytical techniques, that is, in the cases where the molecules are not jet-cooled and where widely varying ionization wavelengths are employed. We used two-step laser mass spectrometry (L2MS) to study the wavelength (238-310 nm) dependence and the laser pulse energy dependence of the ion yield for 17 polycyclic aromatic hydrocarbons (PAHs). We discuss how these data allow prediction of the efficiency of 1+1 REMPI for a given compound. These advances open new perspectives for better understanding the L2MS spectra obtained directly from complex mixtures such as environmental samples.  相似文献   

18.
A newly developed, mobile laser mass spectrometer (resonance-enhanced multiphoton ionization - time-of-flight mass spectrometer, REMPI-TOFMS) was applied to on-line measurements at a waste incineration pilot plant. REMPI-TOFMS combines the optical selectivity of resonance-enhanced multiphoton ionization with a time-of-flight mass analysis to give a two-dimensional analytical method. Special care was taken to build up a sampling and inlet system suitable for on-line measurements of large, semivolatile polycyclic aromatic hydrocarbons (PAHs). An effusive molecular beam inlet in combination with a fixed frequency UV laser (Nd:YAG at 266 nm or KrF excimer at 248 nm) was used. Under these conditions, many different PAHs can be ionized selectively from the complex flue gas matrix. For example, the achieved detection limit for naphthalene is in the 10 parts-per-trillion by volume (pptv) concentration range. Calibration was performed by using external concentration standards supplied in low ppbv concentrations. The instrumentation is sufficiently robust to be operated under industrial conditions at incineration plants, for instance. The REMPI mass spectra can be acquired at 5-50 Hz. Time profiles of the concentrations of different PAHs in the flue gas were monitored with a time resolution of 200 ms. Significant variations in the concentration profile of several PAHs up to mass 276 amu (e.g., benzo[ghi]perylene) and methylated PAHs have been observed while combustion parameters were changing. In summary, it was demonstrated that laser mass spectrometry (REMPI-TOFMS) enables a real-time on-line trace analysis of combustion flue gases or industrial process gases.  相似文献   

19.
The need for a continuous monitor for environmentally important pollutants at realistic [parts-per-trillion (parts in 10(12))] concentrations measured in real time (minutes) is widely recognized. We developed an instrument that is based on supersonic-jet expansion and cooling, followed by resonantly enhanced multiphoton ionization (REMPI) into a mass spectrometer. This approach furnishes the dual selectivity of narrow-band tuned laser absorption and mass analysis. We initiated a spectroscopic characterization of the jet's collisional cooling behavior to optimize the instrument's sensitivity and selectivity, made measurements of several aromatic compounds (including polychlorinated dioxins) by use of a one-color REMPI scheme, and demonstrated a two-color excitation scheme.  相似文献   

20.
Batch and column experiments were conducted to investigate the feasibility of flushing with silicone oil emulsion for the removal of chlorinated solvents, including trichloroethylene (TCE), perchloroethylene (PCE) and 1,2-dichlorobenzene (DCB). In the batch experiments, solubilization potentials of emulsion and effects of surfactants as additives were examined. The emulsion prepared with 2% (v/v) silicone oil could solubilize 90.7% of 10,000 ppm TCE, 97.3% of 4000 ppm PCE and 99.7% of 7,800 ppm DCB. Results of one-dimensional column studies indicated that aqueous solubility and sorption of contaminants determined the flushing efficiency. The addition of surfactants below their critical micelle concentration (CMC) did not affect the removal of chlorinated solvents in batch and column experiments. The results of this study show that flushing with oil-based emulsion can be applied to treat the chlorinated solvents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号