首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Complementary DNAs encoding the heavy and light chains of the Fab fragment of mouse agglutinating monoclonal antibody against human red blood cells were cloned by polymerase chain reaction and their nucleotide sequences were determined. The sequence analysis showed that the variable regions of the heavy and light chains were the members of mouse heavy-chain subgroup IIa and kappa light-chain subgroup I, respectively. A few unusual amino acids in the constant regions of the heavy chain were also recognized.  相似文献   

2.
While studying the expression of single-chain antibodies (scFv) derived from several murine monoclonal antibodies, we found that residue 6 in Framework region 1 of the heavy chain variable domain plays a crucial role in antibody folding. Binding activity of three murine antibodies with a heavy chain variable region (VH) subgroup IIA was completely lost when at this position the wild-type residue glutamine (Q) was substituted by glutamate (E). Increased sensitivity towards trypsin digestion of soluble scFv suggested that the lack of binding activity was caused by incorrect folding of Q6E mutants. Grafting of the three additional class IA derived FR1 residues, based upon the comparison between both classes of VH sequences, on to the 'defect' subgroup IIA sequence, partially restored the antigen binding activity of the Q6E-containing scFv. Our results suggest that residue 6 of the heavy chain may be part of a folding nucleus, involving the first two beta-strands of Framework region 1. The evolutionary conservation of either glutamine or glutamate at position 6 in different antibody families may well indicate that within immunoglobulin VH domains, different family specific folding nuclei have evolved.  相似文献   

3.
A phage-display technology was used to produce a single-chain Fv antibody fragment (scFv) from the 30AA5 hybridoma secreting anti-glycoprotein monoclonal antibody (MAb) that neutralizes rabies virus. ScFv was constructed and then cloned for expression as a protein fusion with the g3p minor coat protein of filamentous phage. The display of antibody fragment on the phage surface allows its selection by affinity using an enzyme-linked immunosorbent assay (ELISA); the selected scFv fragment was produced in a soluble form secreted by E. coli. The DNA fragment was sequenced to define the germline gene family and the amino-acid subgroups of the heavy (VH) and light (VL) chain variable regions. The specificity characteristics and neutralization capacity of phage-displayed and soluble scFv fragments were found to be identical to those of the parental 30AA5 MAb directed against antigenic site II of rabies glycoprotein. Phage-display technology allows the production of new antibody molecule forms able to neutralize the rabies virus specifically. The next step could be to engineer and produce multivalent and multispecific neutralizing antibody fragments. A cocktail of multispecific neutralizing antibodies could contain monovalent, bivalent or tetravalent scFv fragments, for passive immunoglobulin therapy.  相似文献   

4.
Recombinant single-chain fragments (scFv) of the murine anti-MUC1 monoclonal antibody C595 have been produced using the original hybridoma cells as a source of variable heavy (V(H))- and variable light (V(L))-chain-encoding antibody genes. The use of the polymerase chain reaction (PCR), bacteriophage (phage) display technology and gene expression systems in E. coli has led to the production of soluble C595 scFv. The scFv has been purified from the bacterial supernatant by peptide epitope affinity chromatography, leading to the recovery of immunoreactive C595 scFv, which was similar in activity to the C595 parent antibody. Analysis by DNA sequencing, SDS-PAGE and Western blotting has demonstrated the integrity of the scFv, while ELISA, FACScan analysis, fluorescence quenching, quantitative immunoreactivity experiments and immunohistochemistry confirm that the activity of the scFv compares favourably with that of the parent antibody. The retention of binding activity to MUC1 antigen on human bladder and breast carcinoma tissue specimens illustrates the potential application of this novel product as an immunodiagnostic and immunotherapeutic reagent.  相似文献   

5.
Anti-disialoganglioside (GD2) monoclonal antibodies (MAbs) have been used in vivo for immunolocalization and in phase I and II trials to target disseminated neuroblastoma, the most common extracranial solid tumor in children. However, the efficacy of these first-generation MAbs is likely to be improved by using engineered anti-GD2 antibodies. The generation of single-chain antibody fragments (scFv) could be very helpful as these molecules can be further modified to produce recombinant molecules with pre-defined properties such as immunotoxins, chimeric, or bispecific antibodies. Thus, a scFv directed against GD2 (scFv 7A4) was cloned, sequenced, and expressed. Its binding properties were characterized and compared to that of the parental MAb 7A4. Nucleotide sequence analysis of the scFv 7A4 indicated that its VH region belongs to the V region IIID subgroup and the V kappa to the V region II subgroup. The scFv 7A4 bound to GD2+ neuroblastoma cell lines but not to GD2- cell lines or to GD2- cells isolated from peripheral blood. ELISA and thin-layer chromatography (TLC) indicated that it retained the anti-GD2 specificity, and exhibited a slight cross-reaction with GD3 as the parental MAb. This scFv makes it possible to develop new useful reagents through genetic engineering for adjuvant tumor therapy.  相似文献   

6.
We have applied the combinatorial immunoglobulin library and phage display technologies to generate monoclonal rabbit single-chain Fv (scFv) antibody fragments specific for recombinant human leukemia inhibitory factor (rhLIF). The B cell immunoglobulin repertoire of an immunized rabbit was immortalized by the combinatorial cloning of the rearranged variable domains of light (VL) and heavy (VH) chains. Affinity selection of the library displaying the rabbit antibody domains on the phage surface resulted in the isolation of phage encoding scFv antibodies which specifically bind to the antigen. We utilized the methylotrophic yeast Pichia pastoris for high level secretion of soluble and functional scFv antibody fragment. More than 100 mg/L of pure and functional rabbit anti-rhLIF scFv antibody was obtained directly from the P. pastoris culture supernatant by one-step affinity chromatography.  相似文献   

7.
A semisynthetic antibody library composed of single chain Fv fragments (scFv) was constructed by replacing the heavy chain CDR3 region of a human scFv by a random sequence of eight amino acids using trinucleotide codons. After cloning into a phage display vector, an antibody library was generated with a complexity of 8 x 10(8) independent clones. The library was screened for binders to dinitrophenol, fluorescein isothiocyanate and 3-nitro-4-hydroxy-5-iodophenylacetic acid. scFv antibodies that specifically bound the antigen were obtained in each case.  相似文献   

8.
A random phage peptide library was constructed for the filamentous bacteriophage fuse5. The library was made by inserting a degenerate oligonucleotide which encodes 15 variable amino acids into the NH2-terminal region of the phage gene III protein. This library, containing 1x10(9) different phages, was screened with a human immunoglobulin fusion protein containing the extracellular region of human thrombopoietin receptor. Several phages were isolated following four cycles of enrichment and amplification. These phages specifically bound to the fusion protein. One phage peptide acted as an agonist of the thrombopoietin receptor, since it stimulated the proliferation of thrombopoietin-dependent cells and the differentiation of mouse bone marrow cells to megakaryocytes. The amino acid sequence of this peptide is not present in the primary amino acid sequence of thrombopoietin. This discovery may lead to the design of a small-molecular mimic of thrombopoietin.  相似文献   

9.
The heavy- and light-chain variable regions from a murine monoclonal antibody that recognize Pseudomonas aeruginosa serogroup O6 lipopolysaccharide (LPS) were used to generate a series of chimeric mouse-human monoclonal antibodies with identical variable regions. The murine variable-region gene segments were cloned into an immunoglobulin (Ig) cDNA expression vector that contained the human kappa light-chain and IgG1 constant regions. The IgG1 heavy-chain constant region was then replaced with the human IgG2, IgG3, IgG4, or IgA1 heavy-chain constant region. The five different expression vectors were transfected into Chinese hamster ovary cells for antibody production. The chimeric antibodies exhibited immunoreactivity and affinity similar to that of the parental murine IgG antibody toward whole cells of a serogroup O6 strain. In vitro complement deposition assays demonstrated that the chimeric IgG4 and IgA antibodies did not mediate the deposition of complement component C3 onto the surface of either purified LPS or whole bacteria. The chimeric IgG1 and IgG3 antibodies were similar in their ability to deposit C3 onto the surface of both bacteria and LPS, while IgG2 antibody was more effective at depositing C3 onto the surface of bacteria than onto purified LPS. The pattern of opsonophagocytic activity of the chimeric monoclonal antibodies was similar to that of complement deposition onto bacterial cells in that the chimeric IgG1 and IgG3 had the highest opsonic activity. Although IgG2 deposited more C3 onto the bacterial surface than did IgG4 or IgA, all three of these isotypes had low opsonic activity against the serogroup O6 target strain. This series of related antibodies will help reveal functional differences in efficacy among protective antibodies to P. aeruginosa and will be critical for defining the optimal formulation of either a vaccine for active immunization or a polyclonal intravenous IgG or monoclonal antibody cocktail for passive immunotherapy.  相似文献   

10.
One viral strand of phi Lf, a filamentous phage of Xanthomonas campestris pv.campestris, the open reading frame (ORF440) behind gene VI was identified as gene I. This gene codes for pI protein (440 aa, 48 kDa) which was shown to be membrane-bound in the phi Lf-infected host cell by Western blot analysis using the antibody raised against the protein expressed in Escherichia coli. Its predicted amino acid sequence has a nucleotide-binding motif in the N-terminal 97 aa and a membrane-spanning domain (aa 221 to 236). These structural features are characteristic of pIs of several filamentous phages which are transmembrane proteins required for phage assembly. Thus far, nine phi Lf genes have been identified which are organized in the order GII-gX-gV-gVII-gIX-gVIII-gIII-gVI-gI, similar to the genome organization of E. coli filamentous phages.  相似文献   

11.
The efficiency of both phage display in Escherichia coli and periplasmic expression of recombinant proteins may be limited by the same periplasmic folding steps. To search for E. coli factors that improve the efficiency of both procedures, a library of E. coli proteins was coexpressed in a phagemid vector that contained a poorly folding single-chain Fv antibody (scFv) fragment fused to g3p. We enriched, by panning for antigen binding, those phagemids in which the amount of displayed scFv is highest. We thus identified the periplasmic protein Skp/OmpH/HlpA as improving phage display of a wide range of scFv fragments. This occurs as a result of an increase in the amount of hybrid protein displayed on the phage. Coexpression of skp also increases the functional yield of scFv fragments when expressed by secretion to the periplasm.  相似文献   

12.
A repeated selection of phages from a cyclic hexapeptide phage display library resulted in an enrichment of phages that bound to the monoclonal antibody (MoAb) 82D6A3 (an anti-von Willebrand Factor [vWF] antibody that inhibits binding of vWF to collagen). Two clones were selected that bound both to MoAb 82D6A3 and to rat tail collagen type I in a specific and dose-dependent manner. The two phage clones were further used in a two-direction competition experiment with vWF. vWF was able to displace phages from collagen in a dose-dependent manner with an IC50 of 35 micrograms/mL and phages were able to inhibit vWF binding to collagen. With the use of specific primers, the sequence of the cysteine-flanked hexapeptide inserts could be deduced. The two phage clones carried an almost identical sequence, CVWLWEQC and CVWLWENC, with a substitution of an N for a Q at position 6 of the hexapeptide. Sequence comparison with the known vWF sequence showed the presence of a comparable sequence at position 1129-1136 (VWTLPDQC), located between the collagen-binding A3-domain and the D4-domain. The two cyclic peptides, the putative corresponding vWF peptide, and a peptide with a scrambled cyclic sequence were synthesized. The two cyclic peptides inhibited vWF binding to rat tail collagen type I in a dose-dependent manner, whereas the linear vWF peptide and the scrambled cyclic peptide were inactive. For half maximal inhibition, 100 +/- 12.7 micromol/L and 34.8 +/- 8.59 micromol/L (mean +/- SEM, n = 3) of the N- and the Q-peptide, respectively, were needed. The two cyclic peptides were also able to inhibit vWF binding to calfskin and human collagen type I, but effective concentrations were some 5 to 10 times higher.  相似文献   

13.
An origin of DNA relication was identified in the intergenic region between the early and late gene regions of prolate lactococcal phage c2. A DNA fragment containing this origin, designated ori, was shown to direct DNA replication in Lactococcus lactis but not in Escherichia coli. A comparison of ori with the corresponding regions of other prolate phages revealed strict conservation of the nucleotide sequence in one half of this intergenic region. This conserved region alone would not support DNA replication. No open reading frames were identified in the ori fragment, suggesting that host factors alone are sufficient to initiate DNA replication at ori. A novel class of lactococcal vectors and E. coli-L. lactis shuttle vectors based on ori have been constructed.  相似文献   

14.
Monoclonal antibodies (MAbs), because of their inherent specificity, are ideal targeting agents. They can be used to deliver radionuclides, toxins or cytotoxic drugs to a specific tissue or malignant cell populations. Intact immunoglobulin (IgG) molecules have several practical limitations of their pharmacology; their relatively large size of approximately 150,000 daltons leads to a slow clearance from the blood pool and the body resulting in significant exposure to normal organs with limited quantities delivered to tumors. The IgG molecule shows a relatively poor diffusion from the vasculature into and through the tumor. Attempts to modify the pharmacology of the Ig molecule have classically involved the use of proteases to generate F(ab')2 and Fab' fragments with molecular weights of approximately 100,000 and 50,000 daltons, respectively. Fv fragments of IgG are one of the smallest size functional modules of antibodies that retain high affinity binding of an antigen. Their smaller size, approximately 25,000 daltons, enables better tumor penetration and makes them potentially more useful than a whole antibody molecule for clinical applications. Molecular cloning and expression of the variable region genes of IgG has greatly facilitated the generation of engineered antibodies. A single-chain Fv (scFv) recombinant protein, prepared by connecting genes encoding for heavy-chain and light-chain variable regions at the DNA level by an appropriate oligonucleotide linker, clears from the blood at much faster rate than intact IgG. The scFv fragment can retain an antigen-binding affinity similar to that of a monovalent Fab' fragment; this however, represents a relative decrease in binding affinity when compared to intact antibodies. The scFv with its faster clearance and lower affinity results in a lower percent-injected dose localizing in tumors when compared to the divalent IgG molecule. This may be adequate for imaging but probably not for therapy. The valency of the MAb fragment is critical for the functional affinity of an antibody to a cell surface or a polymeric antigen. In attempts to generate multivalent forms of scFv molecules, non-covalently linked scFv dimeric and trimeric molecules, disulfide linked dimeric scFvs, as well as covalently linked chimeric scFvs have been studied. These multivalent scFvs generally have a higher functional affinity than the monovalent form resulting in better in vivo targeting. Another way to alter the pharmacology of the scFvs is to modify its net charge. Charge-modified scFvs with desired isoelectric points (pI), have been prepared by inserting negatively charged amino acids on the template of the variable region genes. This can help to overcome undesirable elevations in renal uptake seen with most antibody fragments. In conclusion, genetic manipulations of the immunoglobulin molecules are effective means of altering stability, functional affinity, pharmacokinetics, and biodistribution of the antibodies required for the generation of the "magic bullet".  相似文献   

15.
A single-chain antibody phage display library was constructed from spleen cells of mice immunized with a soluble form of a human vascular endothelial growth factor (VEGF) receptor, kinase insert domain-containing receptor (KDR). After two rounds of biopanning, >90% of the clones recovered were specifically reactive to KDR. Subsequent selection identified two clones that blocked VEGF binding to KDR. The clones were expressed in Escherichia coli and purified as soluble single-chain Fv (scFv) antibodies. The affinities of the scFv for binding to KDR were determined by BIAcore analysis (2.1 x 10(-9)-5.9 x 10(-9) M). One scFv, p1C11, was shown to inhibit VEGF-induced KDR phosphorylation and VEGF-stimulated DNA synthesis in human umbilical vein endothelial cells. There is much experimental evidence to suggest that the VEGF/KDR/Flk-1 pathway plays an important role in tumor angiogenesis, a process that is essential for tumor growth and metastasis. The antibodies discussed here, which block VEGF binding to KDR, have potential clinical application in the treatment of cancer and other diseases where pathological angiogenesis is involved.  相似文献   

16.
The phi29-like phage genus of Podoviridae family contains phages B103, BS32, GA-1, M2, Nf, phi15, phi29, and PZA that all infect Bacillus subtilis. They have very similar morphology and their genomes consist of linear double-stranded DNA of approximately 20 kb. The nucleotide sequences of individual genomes or their parts determined thus far show that these phages evolved from a common ancestor. A terminal protein (TP) that is covalently bound to the DNA 5'-end primes DNA replication of these phages. The same mechanism of DNA replication is used by the Cp-1 related phages (also members of the Podoviridae family) and by the phage PRD1 (member of the Tectoviridae family). Based on the complete or partial genomic sequence data of these phages it was possible to analyze the evolutionary relationship within the phi29-like phage genus as well as to other protein-primed replicating phages. Noncoding regions containing origins of replication were used in the analysis, as well as amino acid sequences of DNA polymerases, and with the phi29-like phages also amino acid sequences of the terminal proteins and of the gene 17 protein product, an accessory component of bacteriophage DNA replicating machinery. Included in the analysis are also results of a comparison of these phage DNAs with the prophages present in the Bacillus subtilis genome. Based on this complex analysis we define and describe in more detail the evolutionary branches of phi29-like phages, one branch consisting of phages BS32, phi15, phi29, and PZA, the second branch composed of phages B103, M2, and Nf, and the third branch having phage GA-1 as its sole member. In addition, amino acid sequences of holins, proteins involved in phage lysis were used to extend the evolutionary study to other phages infecting Gram-positive bacteria. The analysis based on the amino acid sequences of holins showed several weak points in present bacteriophage classification.  相似文献   

17.
Selectively-infective phage (SIP) is a novel methodology for the in vivo selection of interacting protein-ligand pairs. It consists of two components, (1) a phage particle made non-infective by replacing its N-terminal domains of geneIII protein (gIIIp) with a ligand-binding protein, and (2) an "adapter" molecule in which the ligand is linked to those N-terminal domains of gIIIp which are missing from the phage particle. Infectivity is restored when the displayed protein binds to the ligand and thereby attaches the missing N-terminal domains of gIIIp to the phage particle. Phage propagation is thus strictly dependent on the protein-ligand interaction. We have shown that the insertion of beta-lactamase into different positions of gIIIp, mimicking the insertion of a protein-ligand pair, led to highly infective phage particles. Any phages lacking the first N-terminal domain were not infective at all. In contrast, those lacking only the second N-terminal domain showed low infectivity irrespective of the presence or absence of the F-pilus on the recipient cell, which could be enhanced by addition of calcium. An anti-fluorescein scFv antibody and its antigen fluorescein were examined as a protein-ligand model system for SIP experiments. Adapter molecules, synthesized by chemical coupling of fluorescein to the purified N-terminal domains, were mixed with non-infective anti-fluorescein scFv-displaying phages. Infection events were strictly dependent on fluorescein being coupled to the N-terminal domains and showed a strong dependence on the adapter concentration. Up to 10(6) antigen-specific events could be obtained from 10(10) input phages, compared to only one antigen-independent event. Since no separation of binders and non-binders is necessary, SIP is promising as a rapid procedure to select for high affinity interactions.  相似文献   

18.
The fhuA genes of Salmonella paratyphi B, Salmonella typhimurium, and Pantoea agglomerans were sequenced and compared with the known fhuA sequence of Escherichia coli. The highly similar FhuA proteins displayed the largest difference in the predicted gating loop, which in E. coli controls the permeability of the FhuA channel and serves as the principal binding site for the phages T1, T5, and phi80. All the FhuA proteins contained the region in the gating loops required in E. coli for ferrichrome and albomycin transport. The three subdomains required for phage binding were contained in the gating loop of S. paratyphi B which is infected by the E. coli phages, whereas two of the subdomains were deleted in S. typhimurium and P. agglomerans which are resistant to the E. coli phages. Small deletions in a surface loop adjacent to the gating loop, residues 236 to 243 and 236 to 248, inactivated E. coli FhuA with regard to transport of ferrichrome and albomycin, but sensitivity to T1 and T5 was fully retained and sensitivity to phi80 and colicin M was reduced 10-fold. Full-size FhuA hybrid proteins of S. paratyphi B and S. typhimurium displayed S. paratyphi B FhuA activity when the hybrids contained two-thirds of either the N- or the C-terminal portions of S. paratyphi B and displayed S. typhimurium FhuA activity to phage ES18 when the hybrid contained two-thirds of the N-terminal region of the S. typhimurium FhuA. The central segment of the S. paratyphi B FhuA flanked on both sides by S. typhimurium FhuA regions conferred full sensitivity only to phage T5. The data support the essential role of the gating loop for the transport of ferrichrome and albomycin, identified an additional loop for ferrichrome and albomycin uptake, and suggest that several segments and their proper conformation, determined by the entire FhuA protein, contribute to the multiple FhuA activities.  相似文献   

19.
Reexpression of the V(D)J recombinase-activating genes RAG1 and RAG2 in germinal center B cells creates the potential for immunoglobulin gene rearrangement and the generation of new antigen receptor specificities. Intermediate products of V(D)J recombination are abundant in a subset of germinal center B cells, demonstrating that the kappa immunoglobulin light-chain locus becomes a substrate for renewed V(D)J recombinase activity. This recombinationally active cell compartment contains many heavy-chain VDJ rearrangements that encode low-affinity or nonfunctional antibody. In germinal centers, secondary V(D)J recombination may be induced by diminished binding to antigen ligands, thereby limiting abrupt changes in receptor specificity to B cells that are usually eliminated from the germinal center reaction. This restriction preserves efficient antigen-driven selection in germinal centers while allowing for saltations in the somatic evolution of B cells.  相似文献   

20.
The effects of subcellular localization on single-chain antibody (scFv) expression levels in transgenic tobacco was evaluated using an scFv construct of a model antibody possessing different targeting signals. For translocation into the secretory pathway a secretory signal sequence preceded the scFv gene (scFv-S). For cytosolic expression the scFv antibody gene lacked such a signal sequence (scFv-C). Also, both constructs were provided with the endoplasmic reticulum (ER) retention signal KDEL (scFv-SK and scFv-CK, respectively). The expression of the different scFv constructs in transgenic tobacco plants was controlled by a CaMV 35S promoter with double enhancer. The scFv-S and scFv-SK antibody genes reached expression levels of 0.01% and 1% of the total soluble protein, respectively. Surprisingly, scFv-CK transformants showed considerable expression of up to 0.2% whereas scFv-C transformants did not show any accumulation of the scFv antibody. The differences in protein expression levels could not be explained by the steady-state levels of the mRNAs. Transient expression assays with leaf protoplasts confirmed these expression levels observed in transgenic plants, although the expression level of the scFv-S construct was higher. Furthermore, these assays showed that both the secretory signal and the ER retention signal were recognized in the plant cells. The scFv-CK protein was located intracellularly, presumably in the cytosol. The increase in scFv protein stability in the presence of the KDEL retention signal is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号