首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Seeds from different collections of cultivatedSesamum indicum Linn. and three related wild species [specifically,S. alatum Thonn.,S. radiatum Schum and Thonn. andS. angustifolium (Oliv.) Engl.] were studied for their oil content and fatty acid composition of the total lipids. The wild seeds contained less oil (ca. 30%) than the cultivated seeds (ca. 50%). Lipids from all four species were comparable in their total fatty acid composition, with palmitic (8.2–12.7%), stearic (5.6–9.1%), oleic (33.4–46.9%) and linoleic acid (33.2–48.4%) as the major acids. The total lipids from selected samples were fractionated by thin-layer chromatography into five fractions: triacylglycerols (TAG; 80.3–88.9%), diacylglycerols (DAG; 6.5–10.4%), free fatty acids (FFA; 1.2–5.1%), polar lipids (PL; 2.3–3.5%) and steryl esters (SE; 0.3–0.6%). Compared to the TAG, the four other fractions (viz, DAG, FFA, PL and SE) were generally characterized by higher percentages of saturated acids, notably palmitic and stearic acids, and lower percentages of linoleic and oleic acids in all species. Slightly higher percentages of long-chain fatty acids (20∶0, 20∶1, 22∶0 and 24∶0) were observed for lipid classes other than TAG in all four species. Based on the fatty acid composition of the total lipids and of the different acyl lipid classes, it seems thatS. radiatum andS. angustifolium are more related to each other than they are to the other two species.  相似文献   

2.
The fatty acid composition of seeds from seven species of the genusPinus (P. pinaster, P. griffithii, P. pinea, P. koraiensis, P. sylvestris, P. mughus, andP. nigra) was established. Pine seeds are rich in oil (31–68% by weight) and contain several unusual polymethylene-interrupted unsaturated fatty acids with acis-5 ethylenic bond. These are thecis-5,cis-9 18:2,cis-5,cis-9,cis-12 18:3,cis-5,cis-11 20:2, andcis-5,cis-11,cis-14 20:3 acids, with a trace ofcis-5,cis-9,cis-12,cis-15 18:4 acid. Their percentage relative to total fatty acids varies from a low of 3.1% (P. pinea) to a high of 30.3% (P. sylvestris), depending on the species. The majorcis-5 double bond-containing acid is generally thecis-5,cis-9,cis-12 18:3 acid (pinolenic acid). In all species, linoleic acid represents approximately one-half the total fatty acids, whereas the content of oleic acid varies in the range 14–36% inversely to the sum of fatty acids containing acis-5 ethylenic bond. The easily available seeds fromP. koraiensis appear to be a good source of pinolenic acid: their oil content isca. 65%, and pinolenic represents about 15% of total fatty acids. These values appear to be rather constant.Pinus pinaster, which is grown on several thousand acres in the southwest of France, is an interesting source ofcis-5,cis-11,cis-14 20:3 acid (7% in the oil, which isca. 35% of the dehulled seed weight), an acid sharing in common three double bonds with arachidonic acid. Apparently,P. sylvestris seed oil contains the highest level ofcis-5 double bond-containing acids among pine seed oils that have ever been analyzed.  相似文献   

3.
In contrast to the dominating unsaturated C18 fatty acid, medium‐chain fatty acids (MCFA) are nearly absent in the oil of common canola. Modification of canola oil towards higher contents of C8 to C14 fatty acids would create new possibilities for oleo‐chemical usages, in both the nutritional and the non‐food sectors. For this purpose, spring oilseed rape (cv. ‘Drakkar’) was genetically modified by introduction of MCFA‐encoding genes from Cuphea species containing approximately 90% MCFA in their seed oil. Two different single constructs involving the 3‐ketoacyl‐acyl carrier protein synthase (KAS)III from C. lanceolata were used, one harbouring the wild‐type gene, ClKASIIIbwt, and the other containing the point‐mutated gene, ClKASIIIbmut, along with two double constructs containing ClKASIIIbmut in combination with a medium‐chain thioesterase gene from C. lanceolata (ClFatB3) or C. hookeriana (ChFatB2). For both single‐gene constructs, a phenotype with an increased content of MCFA was not detected; however, the ClKASIIIbwt transformants produced up to 6.7% palmitic acid (C16). In T2 seeds bearing the ClKASIIIbmut/ClFatB3 double‐gene construct, contents of up to 2.9% capric (C10) and 11.4% palmitic acid were achieved. The best transformant with the gene construct ClKASIIIbmut/ChFatB2 contained 1.4% caprylic acid (C8) and 7.9% C10, and these results were confirmed in T3 seeds.  相似文献   

4.
A keto fatty acid (9-oxo-cis-12-octadecenoic acid) has been isolated in appreciable amounts (45.9%) fromCryptolepis buchnani seed oil. The identification was based on chemical and spectroscopic methods.  相似文献   

5.
Content, fatty acid composition, and glyceride profile of oil from seeds of seven basil (Ocimum sp.) chemotypes were determined. The species studied includedO. basilicum, O. canum, O. gratissimum, andO. sanctum. The oil content ranged from 18 to 26%, with triglycerides comprising between 94 and 98% of extracted neutral lipids. The major acylated fatty acids were linolenic (43.8–64.8%), linoleic (17.8–31.3%), oleic (8.5–13.3%), and palmitic acid (6.1–11.0%). Linolenic acid was similar among the fourO. basilicum chemotypes (57–62%), highest inO. canum (65%), and lowest inO. sanctum (44%). Basil seed oil appears suitable as an edible oil or can be used for industrial purposes, and could be processed in the same way as linseed oil. Preliminary calculations estimate that a hectare of basil could produce from 300 to 400 kg of seed oil.  相似文献   

6.
Kinetics of the formation of trans linoleic acid and trans linolenic acid were compared. Pilot plant-scale tests on canola oils were carried out to validate the laboratory-scale kinetic model of geometrical isomerization of polyunsaturated fatty acids described in our earlier publication. The reliability of the model was confirmed by statistical calculations. Formation of the individual trans linoleic and linolenic acids was studied, as well as the effect of the degree of isomerization on the distribution of the trans fatty acid isomers. Oil samples were deodorized at temperatures from 204 to 230°C from 2 to 86 h. Results showed an increase in the relative percentage of isomerized linolenic and linoleic acid with an increase in either the deodorization time or the temperature. The percentage of trans linoleic acid (compared to the total) after deodorization ranged from <1 to nearly 6%, whereas the percentage of trans linolenic acid ranged from <1 to >65%. Applying this model, the researchers determined the conditions required to produce a specially isomerized oil for a nutritional study. The practical applications of these trials are as follows: (i) the trans fatty acid level of refined oils can be predicted for given deodorization conditions, (ii) the conditions to meet increasingly strict consumer demands concerning the trans isomer content can be calculated, and (iii) the deodorizer design can be characterized by the deviation from the theoretical trans fatty acid content of the deodorized oil.  相似文献   

7.
The purpose of this study was to evaluate the trans fatty acid (TFA) composition and the tocopherol content in vegetable oils produced in Mexico. Sample oils were obtained from 18 different oil refining factories, which represent 72% of the total refineries in Mexico. Fatty acids and TFA isomers were determined by gas chromatography using a 100-m fused-silica capillary column (SP-2560). Tocopherol content was quantified by normal-phase high-performance liquid chromatography using an ultraviolet detector and a LiChrosorb Si60 column (25 cm). Results showed that 83% of the samples corresponded to soybean oil. Seventy-two percent of the oils analyzed showed TFA content higher than 1%. Upon comparing the tocopherol contents in some crude oils to their corresponding deodorized samples, a loss of 40–56% was found. The processing conditions should be carefully evaluated in order to reduce the loss of tocopherols and the formation of TFA during refining.  相似文献   

8.
The aim of the present study was to identify and quantitatetrans isomers of C18 fatty acids in some French infant formulas. Twenty powdered infant formulas were purchased in pharmacies and supermarkets in order to assess theirtrans mono- and poly-unsaturated fatty acids content. The fatty acid profiles were examined using methyl and isopropyl ester derivatives. The combination of gas-liquid chromatography, high-performance liquid chromatography, and silver nitrate thin-layer chromatography was needed to describe the detailed fatty acid compositions of the samples, includingtrans isomers of unsaturated C18 fatty acids. All the samples containedtrans isomers of C18∶1 acid (mean level 1.97±0.28% of total fatty acids), with vaccenic acid being generally the major isomer (15 out of 20 samples), thus indicating the origin from bovine milk. All the formulas also contained various isomers of linoleic and α-linolenic acids, but at lower levels.Trans PUFA isomers are the same as those present in deodorized oils. In conclusion, all the infant formulas analyzed in this study contained sometrans fatty acids, including isomers of essential fatty acids. This should be taken into account in the dietary intake of the newborn.  相似文献   

9.
The oil content and fatty acid composition of commercially important Turkish fish species (anchovy,Engraulis encrasicholus; freshwater rainbow trout,Salmo gairdneri; and cultured salmon,S. salar) were determined. Palmitic (16∶0), palmitoleic (16∶1), oleic (18∶1), and docosahexaenoic (22∶6) acids were the most abundant fatty acids in all species. Eicosapentaenoic acid (20∶5) was twice as high in the anchovy oil as in the rainbow trout and salmon oils. Significant quantities of linoleic acid (18∶2) and docosahexaenoic acids (22∶6) were found in both rainbow trout and salmon samples. The individual fatty acid data obtained from rainbow trout and salmon were similar to each other. All three fish species contain high levels of n-3 polyunsaturated fatty acids and would be suitable for inclusion in the formulation of low-fat highly unsaturated diets.  相似文献   

10.
Guayule, a perennial desert plant, is being developed for domestic production of natural rubber, a strategic commodity for which the United States presently depends totally on foreign sources. At present, rubber alone is not sufficient to make guayule a commercial crop, and additional revenues are being sought from by-products. Because guayule flowers profusely during several years of growth before it is harvested for rubber, seed may also contribute to the economics of guayule production. Seed from 120 plants, including 20 genotypes with 36, 37, 54 and 72 chromosomes, were analyzed for oil content and fatty acid composition. Oil content ranged from 17.1 to 30.5%. On average, seed from diploid and aneuploid plants (with 36 and 37 chromosomes) contained 40.4% more oil than the seed from polyploid plants. The oil consisted of four fatty acids—palmitic (8.7–11.5%), stearic (3.7–6.2%), oleic (6.5–13.9%) and linoleic (69.1–80.2%)—at all ploidy levels. Guayule seed oil was similar to the seed oil from high-linoleic safflower varieties. The use of genetic variation to increase seed yield and seed oil will depend on the absence of negative correlation between oil and rubber production.  相似文献   

11.
The positional and fatty acid selectivities of oat (Avena sativa L.) seed lipase (triacylglycerol hydrolase EC 3.1.1.3) were examined. Pure triacylglycerols were used as substrates. The products of lipolysis were examined by thin-layer chromatography and gas-liquid chromatography. Only symmetrical triacylglycerols were used as substrates; thus potential complications arising from stereobias were avoided. Controls were carried out with a lipase specific for primary positions. The lipase from oat seeds catalyzed the hydrolysis of both primary and secondary esters. When the lipase was tested upon mixtures of homoacid triacylglycerols (triacylglycerols composed of the same three fatty acids), the lipase acted most rapidly upon those containing oleate, elaidate, linoleate and linolenate. Strong intermolecular selectivity against homoacid triacylglycerols containing palmitate, petroselinate and stearate was observed. Comparison of assays performed at 26°C with those performed at 45°C showed that selectivity was temperature-independent. When mixed-acid triacylglycerols containing both oleate and stearate were treated with lipase, intramolecular selectivity was observed, with oleate hydrolysis predominating. From this work and earlier work, it can be concluded that the selectivity exhibited by the oat seed lipase is similar to that of the lipase fromGeotrichum candidum, except that the oat seed lipase attacks elaidate, a fatty acyl group with atrans double bond, whereas theG. candidum lipase strongly discriminates against elaidate.  相似文献   

12.
Quamoclit phoenicea Choisy andQuamoclit coccinea Moench. (Syn.Ipomoea coccinea Linn), belonging to the Convolvulaceae plant family, was found to contain palmitic (22.2%, 33.3%), stearic (11.3%, 1.7%) oleic (13.5%, 14.6%), linoleic (40.1%, 30.8%), vernolic (6.4%, 10.2%), arachidic (3.5%, 6.8%) and behenic (3.8%, 2.6%) acids, respectively.  相似文献   

13.
Soybean [Glycine max (L.) Merr.] oil from current commercial cultivars typically contains ca. 8% linolenic acid (18:3). Applications of plant biotechnology have enabled plant breeders to develop germplasm having as low as 2.0% 18:3. Oils that are naturally low in 18:3 exhibited improved flavor characteristics and greater oxidative stability in high-temperature frying applications compared to hydrogenated soybean oil. As an extension of that research, efforts are underway to characterize genes in soybean that govern expression of higher than normal 18:3 concentration. Such oils may be of interest to the oleochemicals industry for various nonfood applications. Relatively high 18:3 in seed oil is a characteristic trait of the ancestor of modern soybean cultivars, Glycine soja (Sieb. and Zucc.). Accessions of this species have rarely been utilized in soybean improvement, and thus represent a virtually untapped genetic resource for genes governing 18:3 synthesis. We have hybridized cultivated soybean with wild soybean plant introductions. F3:4 seed from the resultant G. max × G. soja populations exhibited a wide segregation pattern for 18:3 and seed mass. A strong negative association was found between 18:3 concentration and seed mass. Oil concentration was positively correlated with seed mass. Evaluation of glycerolipid composition revealed that high 18:3 was not associated with an altered proportion of phospholipid and triacylglycerol among lines segregating for seed mass. Thus, smaller seed mass may be a convenient trait to distinguish future soybean cultivars with highly polyunsaturated oils from other cultivars in production.  相似文献   

14.
The seed oils from twenty-five Conifer species (from four families—Pinaceae, Cupressaceae, Taxodiaceae, and Taxaceae) have been analyzed, and their fatty acid compositions were established by capillary gas-liquid chromatography on two columns with different polarities. The oil content of the seeds varied from less than 1% up to 50%. Conifer seed oils were characterized by the presence of several Δ5-unsaturated polymethylene-interrupted polyunsaturated fatty acids (Δ5-acids) with either 18 (cis-5,cis-9, 18∶2,cis-5,cis-9,cis-12 18∶3, andcis-5,cis-9,cis-12,cis-15 18∶4 acids) or 20 carbon atoms (cis-5,cis-11 20∶2,cis-5,cis-11,cis-14, 20∶3, andcis-5,cis-11,cis-14,cis-17 20∶4 acids). Pinaceae seed oils contained 17–31% of Δ5-acids, mainly with 18 carbon atoms. The 20-carbon acids present were structurally derived from 20∶1n-9 and 20∶2n-6 acids. Pinaceae seed oils were practically devoid of 18∶3n-3 acid and did not contain either Δ5-18∶4 or Δ5-20∶4 acids. Several Pinaceae seeds had a Δ5-acid content higher than 50 mg/g of seed. The only Taxaceae seed oil studied (Taxus baccata) had a fatty acid composition related to those of Pinaceae seed oils. Cupressaceae seed oils differed from Pinaceae seed oils by the absence of Δ5-acids with 18 carbon atoms and high concentrations in 18∶3n-3 acid and in Δ5-acids with 20 carbon atoms (Δ5-20∶3 and Δ5-20∶4 acids). Δ5-18∶4 Acid was present in minute amounts. The highest level of Δ5-20∶4 acid was found inJuniperus communis seed oil, but the best source of Δ5-acids among Cupressaceae wasThuja occidentalis. Taxodiaceae seed oils had more heterogeneous fatty acid compositions, but the distribution of Δ5-acids resembled that found in Cupressaceae seed oils. Except forSciadopytis verticillata, other Taxodiaceae species are not interesting sources of Δ5-acids. The distribution profile of Δ5-acids among different Conifer families appeared to be linked to the occurrence of 18∶3n-3 acid in the seed oils.  相似文献   

15.
Two gas chromatography (GC) procedures were compared for routine analysis of trans fatty acids (TFA) of vegetable margarines, one direct with a 100-m high-polarity column and the other using argentation thin-layer chromatography and GC. There was no difference (P>0.05) in the total trans 18∶1 percentage of margarines with a medium level of TFA (∼18%) made using either of the procedures. Both methods offer good repeatability for determination of total trans 18∶1 percentage. The recoveries of total trans isomers of 18∶1 were not influenced (P>0.1) by the method used. Fatty acid composition of 12 Spanish margarines was determined by the direct GC method. The total contents of trans isomers of oleic, linoleic, and linolenic acids ranged from 0.15 to 20.21, from 0.24 to 0.99, and from 0 to 0.47%, respectively, and the mean values were 8.18, 0.49, and 0.21%. The mean values for the ratios [cis-polyunsaturated/(saturated +TFA)] and [(cis-polyunsaturated + cis-monounsaturated)/(saturated +TFA)] were 1.25±0.39 and 1.92±0.43, respectively. Taking into account the annual per capita consumption of vegetable margarine, the mean fat content of the margarines (63.5%), and the mean total TFA content (8.87%), the daily per capita consumption of TFA from vegetable margarines by Spaniards was estimated at about 0.2 g/person/d.  相似文献   

16.
In addition to some usual fatty acids, the seed oil ofJodina rhombifolia (Santalaceae) contains nine acetylenic fatty acids [9-octadecynoic acid (stearolic acid) (1.1%),trans-10-heptadecen-8-ynoic acid (pyrulic acid) (20.1%), 7-hydroxy-trans-10-heptadecen-8-ynoic acid (2.3%),trans-10,16-heptadecadien-8-ynoic acid (0.7%), 7-hydroxy-trans-10,16-heptadecadien-8-ynoic acid (0.1%),trans-11-octadecen-9-ynoic acid (ximenynic acid) (20.3%), 8-hydroxy-trans-11-octadecen-9-ynoic acid (12.2%),trans-11,17-octadecadien-9-ynoic acid (1.5%), 8-hydroxy-trans-11,17-octadecadien-9-ynoic acid (1.3%), 9-hydroxystearic acid (<0.1%) and 9,10-epoxystearic acid (0.7%)]. The fatty acids have been analyzed by gas chromatography/mass spectrometry of their methyl ester and 4,4-dimethyloxazoline derivatives. The hydroxy fatty acid methyl esters have been examined also as trimethyl-silyl ethers. Furthermore, the fatty acid methyl esters (FAME) have been fractionated according to their polarity (FAME-A: nonhydroxy; FAME-B: hydroxy fatty acids) and to their degree of unsaturation (FAME-A1/A2; FAME-B1/B2) by preparative thin-layer chromatography and argentation chromatography, respectively. All of these fractions have been analyzed by ultraviolet and infrared spectroscopy, and the fractions FAME-A and FAME-B have been analyzed further by nuclear magnetic resonance (1H,13C, 2D H/C, attached proton test) spectroscopy and gas chromatography/mass spectrometry. This work is dedicated to the 65th birthday of Prof. Dr. K. Pfeilsticker, Institut of Food Science, University Bonn (Germany).  相似文献   

17.
The seed oil of the gymnosperm Welwitschia mirabilis was found to contain malvalic acid, a cyclopropenoic fatty acid. This is in sharp contrast to most other gymnosperms, which contain Δ5cis-fatty acids as well as the normal set of fatty acids. The importance of this finding in relation to questions of the evolution of the Gymnospermae and Angiospermae, the two main branches of higher plants, is briefly discussed.  相似文献   

18.
Genetic diversity for lipid content and fatty acid profile in rice bran   总被引:5,自引:0,他引:5  
Rice (Oryza sativa L.) bran contains valuable nutritional constituents, which include lipids with health benefits. A germplasm collection consisting of 204 genetically diverse rice accessions was grown under field conditions and evaluated for total oil content and fatty acid (FA) composition. Genotype effects were highly statistically significant for lipid content and FA profile (P<0.001). Environment (year) significantly affected oil content (P<0.05), as well as stearic, oleic, linoleic, and linolenic acids (all with P<0.01 or lower), but not palmitic acid. The oil content in rice bran varied relatively strongly, ranging from 17.3 to 27.4% (w/w). The major FA in bran oil were palmitic, oleic, and linoleic acids, which were in the ranges of 13.9–22.1, 35.9–49.2, and 27.3–41.0%, respectively. The ratio of saturated to unsaturated FA (S/U ratio) was highly related to the palmitic acid content (r 2=0.97). Japonica lines were characterized by a low palmitic acid content and S/U ratio, whereas Indica lines showed a high palmitic acid content and a high S/U ratio. The variation found suggests it is possible to select for both oil content and FA profile in rice bran.  相似文献   

19.
A porous anion-exchange hollow-fiber membrane was prepared by radiation-induced graft polymerization and chemical modification to immobilize lipase for enzymatic reaction in an organic solvent. The amount of anion-exchange group introduced to the porous hollow-fiber membrane was 2.5 mol/kgfiber. A lipase solution was allowed to permeate through the porous anion-exchange hollow-fiber membrane, and lipase molecules that adsorbed onto the grafted polymer brush were cross-linked with glutaraldehyde. The lipase was immobilized at a density of 0.14 kglipase/kgfiber, which was equivalent to a degree of multilayer binding of 20. Esterification was carried out by passing a solution of lauric acid and benzyl alcohol in anhydrous issoctane through the lipase-immobilized membrane, and lipase activity was determined. A reaction percentage of 50% was achieved at space velocity 68 h−1. The maximum immobilized lipase and native lipase activities were 8.9 and 0.38 mol/(h·kglipase), respectively. Thus, the activity of the immobilized lipase was 23.4 times higher than that of the native lipase.  相似文献   

20.
The seeds ofOenothera picensis, O. indecora, Ludwigia longifolia andL. peruviana (Onagraceae) contained 18.3, 16.4, 13.9 and 10.1% oil, respectively. Chromatographic analyses showed high levels of linoleic acid (>71.5%) in the seed oils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号