首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
刘彬  潘贵翔  李鹏  刘浩然  姜甲浩 《钢铁》2017,52(3):93-99
 为了解四辊轧机在轧制过程中液压缸的非线性刚度约束作用,建立了非线性刚度作用下的轧机辊系两自由度垂直振动动力学模型。依据达朗贝尔原理得到含有液压缸非线性刚度的轧机辊系垂直振动方程,运用平均法求得振动系统的幅频响应。以轧机的实际参数为例,分析液压缸非线性刚度、外激励对轧机系统幅频响应的影响,并研究在不同非线性刚度下的轧机振动行为。结果表明,液压缸非线性刚度越大,轧机系统越不稳定;液压缸非线性刚度较弱时,轧机振动行为会逐渐收敛于稳定,液压缸非线性刚度较强时,轧机振动行为会处于不稳定状态,并且出现发散现象,这为抑制轧机振动提供了理论参考。  相似文献   

2.
Soil behavior at the side of an embedded structure with rectangular base area is formulated. The soil medium is idealized as a stack of horizontal sheets interconnected by distributed vertical springs. Each sheet is made of a previously proposed column-spring system. The computed results indicate that, at frequencies higher than the fundamental natural frequency of the soil medium, the vertical springs can be eliminated and each sheet can be treated as an independent sheet in the plane strain condition. This approximation and Galerkin’s method for weighted residuals lead to very simple expressions for the soil stiffnesses per depth at the side of a structure with rectangular cross section. The formulations developed are computationally very convenient and confirmed to produce results close to those computed by a far more rigorous method. The dynamic soil stiffnesses at the side of a structure are computed for various cases. The dynamic response analyses of partially embedded structures are presented to demonstrate the application of the approach and formulations developed.  相似文献   

3.
The interaction of wind with elastic structures is complex. It is impossible to describe both wind and structural motion without considering the interaction therein. The purpose of this technical note is to present a method for simulating wind-structure interaction using commercial software. The use of commercial software is significant because it enables the utilization of this method by civil engineers of various technical backgrounds. The proposed method is a time-dependent, incremental load–response technique. It employs a partitioned procedure that uses Fluent’s computational fluid dynamics software for finding the wind-induced forces on a structure, and Matlab for determining the corresponding structural response. The method is validated by analyzing the two-dimensional vortex-induced oscillations of an elastically mounted circular cylinder. The cylinder is modeled as an elastically mounted rigid body with motion limited to the perpendicular direction with respect to the mean flow. The maximum nondimensional displacement of the cylinder is calculated and found to fall within the range of previously published numerical and experimental values.  相似文献   

4.
In dynamic analysis, hysteretic damping often provides a reasonable model of the inelastic behavior of a structure. Nonlinearity presented by hysteretic damping, however, introduces the possibility of developing complicated motions not expected in linear dynamics. In this study, motions of a single-degree-of-freedom system with hysteretic damping under dual-frequency sinusoidal excitations are investigated through numerical simulation. Hysteretic damping behavior is represented by three different plasticity models: the elasto-perfectly-plastic model; the linear kinematic hardening model; and the two-surface model. Under certain conditions, the resultant motions from the elasto-perfectly-plastic model and the two-surface model exhibit a continual increment of plastic deformation in successive cycles. Parametric study shows that this dynamic ratcheting develops when applied frequencies are commensurable (i.e., related to each other with integer ratio), and the product of terms comprising the ratio is an even number. In the Poincaré section, motion from commensurable frequencies shows limit cycle behavior, whereas the boundedness of motion for incommensurable frequencies is depicted by having quasi-periodicity. On the other hand, the response of the linear kinematic hardening model is qualitatively different and, in particular, dynamic ratcheting does not develop, irrespective of the frequency commensurability. These findings suggest that model selection may have unanticipated consequences for the analysis and design of structural systems subjected to severe dynamic loadings, such as major earthquakes.  相似文献   

5.
The effects of nonlinear viscous damping on the dynamic response of single-degree-of-freedom (SDOF) structural systems are analyzed. This kind of damping characterizes a special class of fluid viscous dampers recently utilized in the field of vibration control as base-isolation devices or viscoelastic elements included in steel braces of framed structures. The analytical relationship adopted to reproduce the mechanical behavior of the fluid viscous dampers is a fractional power-law of the velocity, the exponent of which ranges between 0.1 and 0.2. This function had been previously calibrated on the results of a special experimental survey carried out at the University of Florence. The dynamics of the classical linear-viscous SDOF oscillator is herein reformulated on the basis of the above-mentioned fractional viscous damping (FrVD) relationship. In particular, the transient and steady-state responses are examined in both free and forced vibration conditions. The magnification and transmissibility factors are analytically determined for different damping levels. Moreover, the relation between the viscous damping coefficient and the frequency ratio (i.e., the ratio of the dynamic load to the oscillator frequencies) is defined. The diagrams describing these functions provide direct correlations between the damping as well as the elastic properties of the system and the frequency content of the dynamic action.  相似文献   

6.
Response Spectrum Superposition for Structures with Uncertain Properties   总被引:1,自引:0,他引:1  
A response spectrum based stochastic approach is developed for analyzing the earthquake response of structures with uncertain properties. For this purpose, expressions for the variances of root-mean-square values of various response quantities at different levels of a multi-degree-of-freedom structure are derived in terms of the covariances of the modal parameters of the structure. The required covariances are defined as a function of the standard deviations of structural properties; i.e., mass, stiffness, and damping ratio. The validity of the proposed method has been established by computing a large number of example results and comparing them with the corresponding exact results obtained by the Monte Carlo simulation method. It is found that there may be significant variations in the response amplitudes for commonly associated uncertainties with the structural properties. The present study provides a simple, practical method to quantify such variations.  相似文献   

7.
Buildings with large column-free floors or long-cantilevered structures can be susceptible to annoying vibrations due to everyday occupants’ activities such as walking. Computer modeling and analytical representation of building structural properties to predict the floor response subjected to excitations due to human activities are important issues that require further studies. Vibration testing and analysis of built structures can assist in more accurate estimation of structure dynamic properties. This paper presents the results of the modal testing conducted on an office building floor and analysis of the collected vibration measurements. It compares these results with the structural response using computer analyses. It also presents a sensitivity study to assess the importance of various structural parameters on the floor dynamic response. From the results presented, it is concluded that for the structure used in this study the raised flooring and nonstructural elements acted mainly as added mass and did not contribute to the floor damping. Conclusions are also made on the importance of various structural parameters on floor response and the analysis of the modal test results.  相似文献   

8.
The behavior of humans jumping and bobbing on flexible structures has become a matter of some concern for both structural integrity and human tolerance. The issue is of great importance for a number of structure types including stadia terraces. A unique test rig has been developed for exploring the forces, accelerations, and displacements that occur when a human subject jumps or bobs on a flexible structure where motion can be perceived. In tests reported earlier, it was found that the subject is able to generate near resonant structural response but it is extremely difficult, if not impossible, to jump or bob at or very near to the natural frequency of the structure when its vertical motion is significant. Also, under such near-resonant conditions, the force developed by the subject was found to drop significantly. In this paper, the effect of altering the subject-to-structure mass ratio and the damping ratio of the structure on these phenomena is presented. As would be expected, it is shown that as the structure becomes more massive and more highly damped it moves less for nominally the same excitation. In this situation, it becomes easier to jump and bob near to resonance and the degree of force dropout reduces, although it is still significant for even the most massive and highly damped case considered. A method for including these effects of human-structure interaction in a load model for dynamic response calculations is then proposed.  相似文献   

9.
A mathematical model was used to study the origin of complex self-sustained diameter oscillations in multibranched microvascular networks. The model includes three branching levels (order 3, 2, and 1 arterioles) of a microvascular network derived from in vivo observation in the hamster dorsal cutaneous muscle. The main biomechanical aspects covered by the model are (1) the dependence of the elastic and active wall stress on the inner radius and (2) the static and dynamic myogenic response. Simulations on isolated arterioles indicate that self-sustained periodic diameter oscillations may occur at constant transmural pressure. Conversely, simulations on the entire network reveal different oscillatory patterns, including periodic, quasiperiodic, and chaotic fluctuations. Chaos in the model is revealed by the presence of a broad noise-like component in the frequency spectrum and by the sensitivity dependence of model results on small perturbations. Our results suggest that, owing to the intrinsic nonlinearity of the system, a contracting mechanism, such as the myogenic response, may induce different oscillatory patterns. The change from periodic to chaotic oscillations may be a consequence of a modest variation in a parameter (systemic pressure or arterial resistance) not necessarily related to pathophysiological conditions. Accordingly, our in vivo observations in the skeletal muscle showed that in some instances arteriolar vasomotion is converted from regular to highly irregular patterns in basal conditions. Vasomotion is found to affect mean blood flow compared with the nonoscillatory steady state. Chaotic oscillations tend to maintain a constant ratio of blood flows entering into bifurcation vessels, whereas periodic vasomotion determines a different flow distribution at branches.  相似文献   

10.
The unsteady wake of a long square cylinder has been numerically analyzed in the present study. Velocity signals at selected locations in the near-wake and the instantaneous forces on the cylinder have been recorded from the numerical model at various Reynolds numbers. These form the basis of investigating the dynamic behavior of the flow system. Results of the present work show the following. Flow past a square cylinder undergoes a sequence of transitions from a steady pattern up to a Reynolds number of 40 to a chaotic one around a Reynolds number of 600. The transition to chaos is manifested through a quasi-periodic route that includes the frequency-locking phenomenon. The quasi-periodicity is seen to set in with two or more Hopf bifurcations. The transition to chaos in the wake of a bluff object is related to the three-dimensionality of the flow. In a 2D simulation, this appears in the form of new harmonics in the velocity traces. The quasi-periodic route to chaos has been established through different characterization tools, such as the spectra, autocorrelation function, time-delay reconstruction, and the Poincaré section. Chaotic behavior is quantified through the calculation of Lyapunov exponent and fractal dimension.  相似文献   

11.
The response factors of refractive index (RI) and ultraviolet (UV) detectors of size exclusion chromatography (SEC) defined as the ratio of area of output signal to the mass of injected sample are studied and analyzed by using five narrowly distributed polystyrene (PS) standard samples with known molar masses. It is found that the individual response factor for a given sample varies with the concentration of the injected solution within a limited range bounded by an upper and a lower limiting response factor values. This variation reveals the conformational change of the polymer chains with the concentration of the injected solution. The dynamic contact concentrations cs of the PS samples derived from the response factor data are in good accordance with those reported earlier by other methods. The physical meanings of the signals of the two detectors are further analyzed and theoretically formulated. The solvation of the polymer chain and the conformation changes play an important role in these detecting systems. Both of the solvation number of the structural repeating unit and the extra embedded solvent due to cluster forming in higher concentrations could be deduced from the variation of response factor with the concentration of the injected solution.  相似文献   

12.
The cable dynamic stiffness describes the load–deformation behavior that reflects the cable intrinsic dynamic characteristics. It is defined as a ratio of response to excitation and represents a very similar frequency response property to the frequency response function (FRF). Therefore, by fitting both analytical cable dynamic stiffness and measured frequency response function, the modal parameters of cables can be identified. Based on the simplified cable dynamic stiffness proposed in the first part of the two-part paper, this paper presents a cable dynamic stiffness based procedure to identify the cable modal parameters (natural frequencies and damping ratios) by modal tests. To carry out the curve fitting, a nonlinear least-squares approach is used. A numerical simulation example is first introduced to illustrate the feasibility of the proposed method. Further, a series of cable modal tests are conducted in the laboratory with different cable tensions and the frequency response functions are measured accordingly. A number of issues related to the cable modal tests have been discussed, such as accelerometer arrangement and excitation placement, frequency resolution, windowing, and averaging. It is demonstrated that the cable modal parameters can be effectively identified by using the proposed method through the cable modal tests.  相似文献   

13.
外掠百叶板流动在工程中十分常见,由其引发的流场自持振荡现象能够导致流场压力持续波动,使周围结构承受持续作用的周期载荷,造成结构疲劳安全隐患.采用数值模拟方法,针对外掠百叶板流场自持振荡问题进行研究.计算结果表明:低马赫数条件下,外掠百叶板流场中产生的自持振荡现象属于纯流体动力学问题,其形成原因为流场剪切层振荡所引发的大尺度涡团的形成与迁移.同时,随之产生的压力振荡具有持续性及周期性.自持振荡频率是空间均匀的,而幅值在主流方向上呈先急剧增大后稳定,最后小幅减小的趋势.随着百叶板内侧的空腔体积不断增大,振荡频率变化较小,振荡幅值逐渐增大并在空腔体积达到一定值后保持稳定.  相似文献   

14.
The parameter dependency of large space structures on the coupling among attitude motion, structural vibration, and orbital motion has been investigated, particularly for structures such as tethered satellite systems. Tethered satellites are noticed for their possible applications. From space solar power systems to deorbit system, the applications of tethered satellites spread out over various fields. In this paper, we investigate planar motion of a satellite model, which consists of two tip particles and a massless spring. For such a space structure, the characteristics of the planar motion are shown to be determined by the mass ratio of tip particles, the natural frequency ratio of axial vibration to orbital motion, and the axial length ratio of the spring to the orbital radius. Among these three parameters, the natural frequency ratio has the greatest influence on the coupling phenomenon. Furthermore, the parameter range over which the coupling phenomenon occurs is specified.  相似文献   

15.
The sensitivity of the wavelet coefficient from structural responses with respect to the system parameters is analytically derived. It is then used in a sensitivity-based inverse problem for structural damage detection with sinusoidal or impulsive excitation and acceleration and strain measurements. The sensitivity of the wavelet coefficient is shown more sensitive than the response sensitivity with an example of a single story plane frame. It is further found not sensitive to different types of model errors in the initial model including the support stiffness, mass density and flexural rigidity of members, damping ratio, and the excitation force. Simulation results show that the damage information is carried mostly in the higher vibration modes of the structure as diagnosed with the corresponding wavelet coefficients from its dynamic responses. A wavelet combination encompasses all the frequency bandwidth is used in the successful identification of a reinforced concrete beam in the laboratory.  相似文献   

16.
17.
This paper presents a robust control methodology for the dynamic response control of a rotating blade exposed to external excitations and modeling uncertainty. The blade is modeled as a tapered thin-walled beam with fiber-reinforced composite material. The dynamic response characteristics of a rotating composite beam are investigated; namely, ply angle, taper ratio, and various selected rotational speeds. To extend life and improve efficiency, a robust control methodology is implemented and structural tailoring composite properties are used. To this end, considering modeling uncertainties and external disturbance conditions, a sliding mode control is proposed and its performance and robustness are compared with the conventional linear quadratic Gaussian control.  相似文献   

18.
In this paper, a three-member tensegrity structure is used as a conceptual model for the dendritic actin network in living cells. The pre and postbuckling behavior of the tensegrity is analyzed basing on the energy method. Analytical simulations are carried out on the tensegrity by using the experimentally obtained scales and mechanic properties of actin-filaments for the structural members of the tensegrity. The model exhibits a stress stiffening regime followed by a stress softening regime in the load-stiffness relationship, which qualitatively tallies with the experimentally observed response of actin networks. Due to the simplicity of the model, there is only a single compressed member and the structure buckles abruptly, which results a softening regime much steeper than that observed in the actin network. To take the member length variety into account, we propose a conceptual large-scale tensegrity system with various member lengths, and its behavior is approximately estimated by the mean response of a large number of three-member tensegrity cells with their member length varying in the range of filament lengths. The obtained mean response exhibits a much better fitness to the response of actin networks than those exhibited by the single tensegrity model. The findings reported in this paper indicate that the dendritic actin network may work as a complex tensegrity system, when it is subjected to a stress.  相似文献   

19.
The effective way of reducing the vibration transmitted from the engine to the supporting structures is use of mounts. The mounts are used not only to isolate the vibration but also to withstand the static and dynamic loads of the engine. In this work, the mount structural materials are prepared from steel, cast iron and epoxy granite and tested for the structural properties and damping ratio. The mounts manufactured using these materials and natural rubber are tested using the experimental setup for the dynamic behavior with harmonic excitations. The results of the reaction forces exerted and the respective phase angles during the harmonic excitations showed that the epoxy granite–rubber mount has improved natural frequency and vibration isolation.  相似文献   

20.
The response of a beam-column frame to impulsive ground shock, such as those induced by an underground explosion, has characteristics of both impact and natural earthquake responses. The critical effects may be governed by the dynamic response of individual elements as continuous mass systems, while to a certain extent the global vibration (as of lumped-mass systems) may also be involved. To incorporate both dynamic features, the present study proposes a combined continua and lumped parameter (CCLP) model, which consists of the basic beam-column element with distributed stiffness and mass, along with concentrated mass-springs at element ends to form the reduced dynamic system. To take into account of the shear deformation and rotary inertia which become important in the impulsive response, the governing equations are formulated based on the Timoshenko beam theory. The nonlinearities are described through three mechanisms, namely the distributed nonlinear flexural and diagonal shear behavior, and the direct sliding shear at the member ends. A generic restoring force model is adopted to describe the hysteretic behavior. Comparison with a scaled model test demonstrates that the CCLP model is capable of representing the primary dynamic features in a frame structure under impulsive ground shock. Extended parametric studies indicate that, with increase of the ground shock frequency, the failure tends to become shear dominant. For ground shocks of frequency at 20–30?Hz and above, the failure in a reinforced concrete column will require a peak ground velocity (PGV) on the order of 3?m/s, whereas failure in a beam would occur at PGV of about 1.5?m/s.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号