首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 62 毫秒
1.
1.6%C超高碳钢热轧后经810℃×1h+750℃×1h球化处理后获得理想的球化组织,碳化物颗粒大小、分布较均匀,铁素体晶粒尺寸为3 ̄5μm。高温拉伸试验表明,在2.5×10-4s-1的应变速率下,800℃时伸长率高达216%,获得很好的超塑性。扫描电镜分析表明,高温拉伸过程中晶粒基本上保持等轴状,碳化物沿晶界长大、粘连,晶内细小碳化物减少。超高碳钢的高温变形主要依靠晶粒的转动和晶界的滑动来实现。  相似文献   

2.
1.31%C超高碳钢的压缩超塑性研究   总被引:3,自引:1,他引:2  
通过观察退火态w(C)=1.31%超高碳钢超塑压缩试样的外观形态.测定其压缩真应力一真应变曲线,探讨了超塑压缩温度、应变速率对超高碳钢压缩超塑性的影响.结果表明,超高碳钢在750~790℃、(0.8~2)×10-3s-1超塑压缩条件下,其应变速率敏感性指数大于0.3,呈现出压缩超塑性变形.  相似文献   

3.
以热机械处理获得的超细晶1.6%C超高碳钢为研究对象,借助电致超塑性压缩试验研究了电场强度和初始应变速率对超高碳钢超塑性的影响,并探讨了其与40Cr钢电致超塑性焊接的可行性.实验结果表明,在压缩温度780℃、初始应变速率(0.5-5.0)×10-4 s-1,试样接正极环状电极接负极条件下,超高碳钢的应力应变曲线呈现出明显的超塑性压缩流变特征,其应变速率敏感性指数为0.46;当电场强度为3 kV/cm时,其超塑稳态流变应力降低10%以上.在焊接温度780℃、初始应变速率1.5×10-4 s-1、预压应力56.6MPa、电场强度3 kV/cm条件下,超高碳钢与40Cr钢实现了电致超塑性焊接,其接头拉伸强度达到533 MPa,比不加电场时增加15%.  相似文献   

4.
对1.6%C超高碳钢进行离异共析和淬火+高温回火两种工艺球化预处理,获得了铁素体基体上分布超细碳化物组织,在此基础上进行了两类淬火处理。显微组织观察分析表明:淬火组织亚结构为位错与孪晶并存;采用感应加热淬火时随感应加热淬火次数增加,板条马氏体增加,孪晶马氏体减少。力学性能测试显示:本试验用超高碳钢强度与中碳结构钢相当;塑性很好,伸长率达17%。  相似文献   

5.
对1.6%C超高碳钢进行离异共析和淬火+高温回火两种工艺球化预处理,获得了铁素体基体上分布超细碳化物组织,在此基础上进行了两类淬火处理。显微组织观察分析表明:淬火组织亚结构为位错与孪晶并存:采用感应加热淬火时随感应加热淬火次数增加,板条马氏体增加,孪晶马氏体减少。力学性能测试显示:本试验用超高碳钢强度与中碳结构钢相当;塑性很好,伸长率达17%。  相似文献   

6.
喷射成形超高碳钢的超塑性等温锻造性能研究   总被引:1,自引:0,他引:1  
研究了喷射成形超高碳钢的显微组织 ,表征了其超塑性变形的力学特征 ,喷射成形超高碳钢的最佳变形温度为 82 0℃ ,最佳应变速率为 2 5× 10 - 4s- 1 。测定了超塑性等温锻造后喷射成形超高碳钢的室温力学性能 ,并观察了其显微组织。结果表明 ,超塑性等温锻造工艺使超高碳钢的组织得到了致密化 ,其原始组织主要是均匀、细密的珠光体 ,锻造后则大部分转变为细小的等轴铁素体晶粒以及弥散分布于其上的碳化物的组织。  相似文献   

7.
形变对超高碳钢组织细化的影响   总被引:2,自引:0,他引:2  
研究了超高碳钢(1.58%C)的控制轧制工艺,控制轧制包括在奥氏体加渗碳体两相区连续轧制、在共析转变温度以下较高温度(750~800℃)大变形轧制.轧后空冷的组织为超细等轴铁素体基体上均匀分布球状碳化物.在共析温度以下变形累积的形变储能引发形变诱导相变,直接析出等轴铁素体和粒状渗碳体.通过控制轧制可以同时实现超高碳钢晶粒超细化、碳化物球化.  相似文献   

8.
基于对预置中间层的1.6C-UHCS/40Cr超塑性焊接工艺方案的优化设计,在非真空及无保护气氛下,进行了超塑性焊接工艺试验.试验结果表明:选用轧制态工业纯铁中间层,能有效改善1.6C-UHCS/40Cr超塑焊界面区的塑性变形能力,提高焊接性.在预压应力56.6 MPa、焊接温度750℃、初始应变速率1.5×10-4/s的条件下,经10 min压接,接头抗拉强度为702 MPa,比不加中间层的接头强度提高35%,达相同热力循环下40Cr母材的抗拉强度.  相似文献   

9.
电场作用下1.6%C-UHCS/40Cr钢的超塑性焊接   总被引:1,自引:0,他引:1       下载免费PDF全文
基于对40Cr钢淬火后与经热机械处理超高碳钢1.6% C-UHCS电场作用下超塑性焊接可行性的分析,在非真空、无保护气氛下,进行了电场作用下1.6% C-UHCS/40Cr的超塑性焊接工艺试验.结果表明,当施加试样接正极、环状电极接负极的电场时,可明显提高40Cr钢淬火后与经热机械处理超高碳钢1.6% C-UHCS的超塑性焊接效果.与不加电场相比,当两者在外加电场+3 kV/cm、预压应力56.6 MPa、焊接温度780℃、初始应变速率1.5×10-4/s的条件下,经20 min超塑性焊接,接头强度提高26.8%.  相似文献   

10.
国外超高碳钢的研究进展   总被引:10,自引:2,他引:8  
超高碳钢(Ultrahigh carbon steels简称为UHCS)是指含碳量为1.0%—2.1%的过共析钢,具有高的超塑性和良好的综合力学性能。本文综述了国外超高碳钢的研究成果,包括超塑性及超塑处理工艺、合金元素的作用、力学性能及层状复合超高碳钢,提出了超高碳钢的研究方向。  相似文献   

11.
球化工艺对热轧超高碳钢组织性能的影响   总被引:1,自引:0,他引:1  
利用离异共析原理,采用不同的热处理工艺球化热轧超高碳钢。组织观察表明:热轧预处理消除了铸态下晶界网状粗大碳化物,并获得颗粒状碳化物与片状珠光体的混合组织。球化热处理时,奥氏体化温度升高、保温时间延长,碳化物颗粒的间距增大,减缓冷却速率增加碳化物的析出。对球化后超高碳钢进行拉伸力学性能试验,850℃球化后的强度很高(σ0.2=688.71MPa,σb=1005.78MPa),屈强比和伸长率分别为0.69、16.7%。拉伸后的断口形貌分析表明,超高碳钢拉伸过程中裂纹易在大颗粒碳化物处萌生、扩展。  相似文献   

12.
利用离异共析原理,采用不同的热处理工艺球化热轧超高碳钢。组织观察表明:热轧预处理消除了铸态下晶界网状粗大碳化物,并获得颗粒状碳化物与片状珠光体的混合组织。球化热处理时,奥氏体化温度升高、保温时间延长,碳化物颗粒的间距增大,减缓冷却速率增加碳化物的析出。对球化后超高碳钢进行拉伸力学性能试验,850℃球化后的强度很高(σ0.2=688.71MPa,σb=1005.78MPa),屈强比和伸长率分别为0.69、16.7%。拉伸后的断口形貌分析表明,超高碳钢拉伸过程中裂纹易在大颗粒碳化物处萌生、扩展。  相似文献   

13.
1.41%C超高碳钢控轧后进行超细球化预处理,并在不同的温度下进行二次淬火。组织观察表明:热轧并球化预处理后超高碳钢获得了超细球化组织,经淬火后获得超细马氏体组织。随淬火温度升高,马氏体逐渐粗化,马氏体亚结构中位错对孪晶的比例先升后降,890℃时获得完全位错亚结构。并提出1.41%C超高碳钢获得大量板条马氏体的淬火温度为860~890℃。  相似文献   

14.
铝合金化超高碳钢的球化工艺研究   总被引:2,自引:0,他引:2  
在超高碳钢 (UHCS)中添加铝 ,利用成分不均匀奥氏体的加热控制 ,可以实现奥氏体在冷却过程中先共析碳化物在基体上弥散析出。这些弥散分布的碳化物颗粒在共析转变前的等温过程中长大 ,其尺寸由等温时间和等温温度控制。随后进行淬火和高温回火处理 ,得到了理想的球化组织。新的球化工艺为 870℃透烧 ,在 780℃等温保持 1 5h淬火 ,然后 6 5 0℃× 2h回火。该工艺与普通等温球化工艺相比 ,使超高碳钢具有高的屈强比  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号