首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为评价噻虫嗪在韭菜上使用的安全性,开展噻虫嗪及其代谢物噻虫胺在韭菜和土壤中的残留量与残留消解动态研究。结果表明:在有效成分用量为2 700 g/hm~2时,噻虫嗪在韭菜和土壤中的半衰期分别为8.6~11.0 d和8.8~11.4 d。在噻虫嗪有效成分用量为1 800~2 700 g/hm2时,药后7~21 d,韭菜中噻虫嗪和噻虫胺的残留量分别为0.032~3.030 mg/kg和0.027~1.590 mg/kg,土壤中噻虫嗪和噻虫胺的残留量分别为0.174~3.400 mg/kg和0.011~0.193 mg/kg。  相似文献   

2.
[目的]通过2年3地的水稻田间试验,研究了50%噻虫胺水分散粒剂在水稻和土壤中的残留及消解动态。[方法]利用QuEChERS-HPLC-MS/MS法。[结果]噻虫胺在水稻植株、土壤、田水中的消解动态符合一级反应动力学方程。2016年安徽植株、田水、土壤中半衰期分别为7.5、5.6、6.5d;辽宁分别为8.7、3.4、8.1d;浙江分别为5.3、7.8、13.3d;2017年安徽植株、田水、土壤中半衰期分别为6.5、4.3、23.9d;辽宁分别为5.5、5.4、11.7d、浙江分别为9.0、7.7、27.7d。当50%噻虫胺水分散粒剂以120、180ga.i./hm2 2个剂量分别施药2~3次,施药间隔30d时,噻虫胺在水稻植株、糙米、土壤中的最终残留量小于0.07mg/kg。[结论]噻虫胺属于易降解农药,在糙米的最终残留量小于我国制定的噻虫胺在糙米中的最大残留限量0.2mg/kg。  相似文献   

3.
郭曼  高飞  李爽  周琳  杜鹏强 《农药》2022,(12):905-909
[目的]为研究噻虫嗪及代谢物噻虫胺在甘蓝和土壤中的残留动态,评价噻虫嗪在甘蓝上的安全使用。[方法]采用乙腈提取农药有效成分,N-丙基乙二胺吸附剂(PSA)和石墨化碳黑(GCB)吸附净化,建立超高效液相色谱串联质谱(UPLC-MS/MS)检测方法,分析噻虫嗪、噻虫胺在甘蓝和土壤中的消解规律及残留水平。[结果]甘蓝和土壤样本中噻虫嗪及噻虫胺最低检测质量分数为0.01 mg/kg,平均回收率为81.9%~105.2%,相对标准偏差在1.5%~12.9%范围内。噻虫嗪在甘蓝和土壤中的消解半衰期分别为10.5~21.0、16.5~31.5 d;噻虫胺在甘蓝上的半衰期为15.4~21.0 d,土壤中噻虫胺的检测量均<0.02 mg/kg。[结论]该方法有足够的灵敏度、准确度和回收率等优点,适合用于甘蓝和土壤中噻虫嗪、噻虫胺的检测分析。残留分析结果表明,使用1%噻虫嗪颗粒剂的最高推荐用药量(450 g a.i./hm2)来防治甘蓝害虫,在收获期采收甘蓝安全。  相似文献   

4.
[目的]建立一种高效液相色谱-串联质谱检测青菜中噻虫嗪和啶虫脒残留量的方法,并比较分析噻虫嗪和啶虫脒在大棚和露地青菜中的残留及消解动态。[方法]按照农药登记残留田间试验标准操作规程,研究了25%噻虫嗪和70%啶虫脒水分散粒剂(推荐高剂量的1.5倍)45、37.8 g/hm~2在露地和大棚各施药1次,距离末次施药0、1、3、5、7、10 d采样测定;2者再按推荐剂量30、25.2 g/hm~2和1.5倍推荐剂量45、37.8 g/hm~2,设2、3次施药,施药间隔为7 d,距离末次施药3、5、7 d采样测定。[结果]噻虫嗪和啶虫脒的消解动态均符合一级动力学方程,噻虫嗪半衰期为1.84 d(大棚)和1.69 d(露地),啶虫脒半衰期为1.98 d(大棚)和1.54 d(露地)。噻虫嗪最终残留量为0.014~0.178 mg/kg(大棚)、0.014~0.171 mg/kg(露地);啶虫脒最终残留量为0.032~0.257 mg/kg(大棚)、0.072~0.222 mg/kg(露地)。[结论]通过数据无重复双因素方差分析,本次试验中时间是影响噻虫嗪和啶虫脒残留消解动态主要因素,环境次之。我国暂未制定噻虫嗪在青菜中的最大限量值(MRL),啶虫脒在普通白菜中的MRL值为1 mg/kg,推荐大棚和露地青菜中噻虫嗪和啶虫脒安全间隔期应为3 d。  相似文献   

5.
王思威  孙海滨  刘艳萍 《农药》2013,(12):899-902
[目的]明确氯虫苯甲酰胺在水稻上的残留行为,为氯虫苯甲酰胺的合理使用及其安全性评价提供科学依据。[方法]采用田间小区试验进行了氯虫苯甲酰胺在水稻植株和土壤中的消解动态和最终残留量研究。样品采用甲醇提取、弗罗里硅土固相萃取柱净化,超高效液相色谱串联质谱仪测定。[结果]水稻植株、糙米、稻壳和土壤中氯虫苯甲酰胺添加质量浓度为0.005~0.1 mg/L时,其平均添加回收率为82.71%~85.47%;相对标准偏差为0.87%~3.96%。方法的最低检测质量浓度为0.005 mg/L。氯虫苯甲酰胺在施用5~6 d后植株中的含量达到最大值(0.018~0.025 mg/kg);在土壤中的消解半衰期为5.53~8.58 d;在水稻糙米中的最终残留量均小于0.01 mg/kg。[结论]建议氯虫苯甲酰胺0.4%颗粒剂防治钻蛀性害虫应在防治适期前5~6 d施药,按推荐剂量42 g a.i./hm2,施用2次,最后1次施药距离收获间隔期为14 d。  相似文献   

6.
[目的]采用高效液相色谱-串联质谱法建立了烯啶虫胺在甘蓝和土壤中的残留分析方法,并研究了烯啶虫胺在甘蓝和土壤中的消解动态及最终残留。[方法]样品经乙腈2次提取后,直接进HPLC-MS/MS检测。[结果]烯啶虫胺在甘蓝及其土壤中的添加回收率为81.7%~104.2%,相对标准偏差为1.6%~4.7%,定量限(LOQ)为0.02 mg/kg。消解动态和最终残留试验结果表明,烯啶虫胺在甘蓝和土壤中的消解半衰期分别为0.7~1.9、4.3~6.2 d,甘蓝最终残留样品中的残留量均低于最低检测浓度(0.02 mg/kg),土壤最终残留样品中的残留量为0.02~0.174 mg/kg。  相似文献   

7.
建立了花生和土壤中氟虫腈及其代谢物的残留分析方法,进行田间试验,明确氟虫腈在花生和土壤中的残留量及残留消解动态。试验结果表明,氟虫腈在土壤中消解动态符合一级动力学方程,半衰期为11.6~16.1 d。花生仁和植株样品中氟虫腈最终残留量小于最低检测质量分数(0.005 mg/kg),低于我国残留限量标准(0.02 mg/kg);土壤中氟虫腈的最终残留量不超过0.450mg/kg,花生壳中氟虫腈的残留量不超过0.138 mg/kg。该方法快速简便,准确可靠。  相似文献   

8.
《现代农药》2015,(6):35-37
研究了噻虫嗪在葡萄果实和土壤中的消解动态、最终残留量以及膳食风险。试验结果表明:在添加水平为0.1~5.0 mg/kg时,添加回收率在89.6%~97.9%之间,相对标准偏差为1.35%~3.58%。噻虫嗪在葡萄中消解较快,半衰期为7.4 d;在土壤中的半衰期为10.0 d。在50 mg/kg和100mg/kg用量下,施药3~4次,噻虫嗪在葡萄果实中的最终残留量0.2 mg/kg,其风险商值小于1。葡萄生产中使用噻虫嗪对人类产生的膳食风险小,可以接受。  相似文献   

9.
[目的]评价噻虫嗪在盆栽辣椒上使用的安全性,研究噻虫嗪及其代谢产物噻虫胺在盆栽辣椒和土壤中的残留降解动态和最终残留量。[方法]在温室种植条件下,按噻虫嗪药剂的推荐剂量0.13 g/L和1.5倍推荐剂量0.2 g/L在辣椒半成熟期时,以灌根方式施药1次,不同时间处理后,取土壤样品和辣椒样品进行检测分析。样品采用乙腈溶液提取,Qu ECh ERS方法净化,超高效液相-串联质谱法(UPLC-MS/MS)测定残留量,利用风险商值法对其进行膳食风险评估。[结果]在0.01~0.1 mg/kg添加水平下,噻虫嗪在辣椒和土壤中的平均回收率为80.1%~113.8%,相对标准偏差为0.14%~6.65%;噻虫胺在辣椒和土壤中的平均回收率为77.4%~105.5%,相对标准偏差为1.41%~7.46%。噻虫嗪在辣椒和土壤中半衰期分别为6.3、11.9 d。按低剂量和高剂量施药后14 d,辣椒中噻虫嗪的最终残留量分别为0.47、2.78 mg/kg,噻虫嗪在辣椒中残留的风险商值(RQ)为0.12。[结论]参照欧盟规定的噻虫嗪在辣椒中的MRL值(0.7 mg/kg)和中国规定的噻虫嗪在黄瓜中的MRL值(0.5 mg/kg),噻虫嗪按推荐剂量,以灌根方式施药1次,14 d后收获的辣椒食用是安全的,人类膳食风险较小。  相似文献   

10.
菠菜中噻虫嗪的残留检测与消解动态   总被引:10,自引:0,他引:10  
采用高效液相色谱分析技术测定了噻虫嗪在菠菜中的残留动态和最终残留.噻虫嗪的最低检出量为1 ng,最低检出质量分数为0.002 mg/kg.在菠菜中的平均回收率为90.5%~101.4%,相对标准偏差0.75%~1.21%.噻虫嗪在土壤和菠菜中的半衰期分别为2.3 d.按180 g/hm2剂量施药3 d后,菠菜中最高残留量为0.55 mg/kg.  相似文献   

11.
《农药》2017,(5)
[目的]对噻呋酰胺在花生生产上应用的安全性进行评价。[方法]采用田间试验的方法,对27%噻呋酰胺·戊唑醇悬浮剂中噻呋酰胺在花生及土壤中的残留消解动态及最终残留量进行研究。气相色谱-质谱法进行定量分析。[结果]消解动态试验结果表明:噻呋酰胺在花生植株中的半衰期为9.1~11.6 d,在土壤中的半衰期为11.0~14.0 d;最终残留量试验结果表明:27%噻呋酰胺·戊唑醇悬浮剂按施药剂量为182.25、273.375 g a.i./hm~2,连续喷药3~4次,施药间隔期7 d,喷药后7、14、21 d土壤中噻呋酰胺残留量为0.01~0.190 mg/kg,花生仁中噻呋酰胺残留量均0.01 mg/kg。[结论]27%噻呋酰胺·戊唑醇悬浮剂在花生上按推荐剂量使用噻呋酰胺是安全的。  相似文献   

12.
《农药》2015,(8)
[目的]为评价棉隆在番茄中使用的安全性,开展棉隆在番茄和土壤中的残留量与残留降解研究。[方法]进行2年3地田间试验。消解动态试验按棉隆675 kg a.i./hm2施药1次;最终残留试验按棉隆675 kg a.i./hm2(1.5倍推荐高剂量)和450 kg a.i./hm2(推荐高剂量)施药1次,番茄收获期采样。[结果]田间消解动态结果表明:棉隆在土壤中消解受含水量影响巨大,半衰期为1.8~13.1 d。按棉隆675、450 kg a.i./hm2施药,番茄收获期采样,番茄中棉隆的残留量0.02 mg/kg,土壤中的残留量为0.02~0.177 mg/kg。[结论]番茄最终残留量低于欧盟规定的最大残留限量(MRL)0.02 mg/kg。  相似文献   

13.
吴绪金  马欢  马婧玮  李通  张军锋  汪红 《农药》2013,(12):889-892,923
[目的]对20%啶虫脒·哒螨灵微乳剂在棉花和土壤中的安全性进行评价,为该农药在棉花上的合理使用提供重要的科学依据。[方法]气相色谱-电子捕获检测器进行定量分析,研究啶虫脒、哒螨灵在棉籽、棉花叶和土壤中的残留及消解动态。[结果]2011、2012年在河南和浙江2地田间残留试验结果表明:啶虫脒在棉花叶和土壤中的消解半衰期分别为3.8~8.9、2.9~6.2 d;哒螨灵在棉花叶和土壤中的消解半衰期分别为0.49~1.3、5.3~7.6 d;不同采样间隔及施药次数,啶虫脒在棉籽中的最终残留量均≤0.005 mg/kg,哒螨灵在棉籽中的最终残留量均≤0.01 mg/kg。[结论]该药为低残留、易消解农药,建议20%啶虫脒·哒螨灵微乳剂防治棉花蚜虫,最高用药量30 g a.i./hm2,最多施药2次,安全间隔期为15 d。  相似文献   

14.
《农药》2017,(9)
[目的]通过2年3地的田间试验及残留检测,明确唑胺菌酯在黄瓜及土壤中的消解动态和最终残留量。[方法]消解动态试验按剂量300 g a.i./hm2施药1次;最终残留试验按300 g a.i./hm2(高剂量)和200 g a.i./hm2(低剂量)分别施药4、5次;采用高效液相色谱法对20%唑胺菌酯悬浮剂有效成分进行检测。[结果]2年3地的消解动态试验结果表明:唑胺菌酯在黄瓜和土壤中的消解半衰期分别为2.86~5.63、4.61~13.25 d。最终残留试验结果表明:唑胺菌酯在黄瓜和土壤中的最终残留量分别为0.020~0.380、0.020~1.134 mg/kg。[结论]建议唑胺菌酯在黄瓜中的最大残留限量为0.08 mg/kg;20%唑胺菌酯悬浮剂按其推荐剂量200 g a.i./hm2在黄瓜上施用4次,安全间隔期为3 d。  相似文献   

15.
为了评价氟菌唑及其代谢物在梨和土壤中的残留动态和环境安全性,采用田间试验的方法,对氟菌唑及其代谢物在梨及土壤中的残留消解动态及其最终残留量进行了研究。消解动态试验结果表明:氟菌唑在梨中的半衰期为3.0~5.0 d,氟菌唑在土壤中的半衰期为10.1~13.9 d。最终残留量试验结果表明:35%氟菌唑可湿性粉剂285.7~428.6 mg/kg连续喷药2~3次,施药间隔期为10 d,药后14 d,土壤中残留量为0.020~0.051 mg/kg,梨中残留量为0.020~0.085 mg/kg。推荐35%氟菌唑可湿性粉剂在梨上使用安全间隔期为14 d。  相似文献   

16.
噻虫胺在甘蔗和土壤中的残留分析及消解动态   总被引:1,自引:0,他引:1  
建立了采用高效液相色谱测定甘蔗及土壤中噻虫胺的残留分析方法,并测定了噻虫胺在甘蔗植株、茎秆及土壤中的消解动态和最终残留。甘蔗茎秆及植株样品用丙酮提取,乙酸乙酯萃取后,再经硅胶柱净化,HPLC测定。土壤样品经乙腈提取后,HPLC检测。结果表明:噻虫胺最小检出量(LOD)为6.80×10-13 g,甘蔗茎秆、植株和土壤中最低检测浓度(LOQ)均为0.05mg/kg。甘蔗茎秆和植株中均未检测到噻虫胺,噻虫胺在土壤中的消解行为符合一级降解动力学方程,半衰期为24.3~26.4 d。建议噻虫胺在甘蔗上的有效成分用量不超过472.5 g/hm2。  相似文献   

17.
[目的]建立测定水稻、田水和土壤中西草净上的残留量气相色谱质谱联用分析方法。[方法]通过田间试验和气相色谱质谱联用分析技术研究25%西草净可湿性粉剂在水稻、田水和土壤中的消解动态及其最终残留量。[结果]吉林长春市、黑龙江海伦市和湖南长沙市2年3地的田间试验结果表明:2011年,西草净在水稻植株、田水和土壤中的原始沉积量分别为5.048 mg/kg、22.299 mg/L和7.730 mg/kg,半衰期(t1/2)分别为2.5、1.4、3.9 d;2012年,西草净在水稻植株、田水和土壤中的原始沉积量分别为5.854 mg/kg、5.854 mg/L和0.090 mg/kg,半衰期(t1/2)分别为1.6、1.7、2.9 d。最终残留试验表明西草净在糙米、稻壳、稻株和土壤中的最终残留量均小于0.02 mg/kg。[结论]25%西草净可湿性粉剂可以在水稻上使用,但施药剂量最高为3 750 g/hm2,施药1次。  相似文献   

18.
《农药》2015,(12)
[目的]为评价四氟醚唑在水稻和环境中的安全性,开展四氟醚唑在水稻和稻田环境中的残留量及消解动态研究。[方法]进行2年3地田间试验。消解动态试验按四氟醚唑72.80ga.i./hm~2施药1次;最终残留试验按72.80ga.i./hm~2(高剂量)和48.53 ga.i./hm~2(低剂量)分别施药2次和3次水稻收获期采样。[结果]四氟醚唑在田水、土壤和植株中的消解半衰期分别为1.7~5.1、4.1~9.8、2.1~6.3 d。四氟醚唑在土壤、植株、谷壳和糙米中的最高残留量分别为0.2133、5.4557、5.4498、0.0397mg/kg。[结论]糙米最终残留量低于欧盟规定的最大残留限量(MRL)0.05mg/kg。  相似文献   

19.
《农药》2015,(1)
[目的]为25%多杀霉素悬浮剂在甘蓝上的安全合理使用提供可靠依据。[方法]建立多杀霉素在甘蓝和土壤中的残留检测方法,并测定在甘蓝和土壤中的消解动态和最终残留。[结果]方法的准确度和精密度符合残留检测要求,在甘蓝中消解半衰期为1.7~2.6 d,在土壤中消解半衰期为1.6~2.3 d。按剂量200、300 ga.i./hm2,施药3~4次,间隔7 d,末次施药后7 d,在甘蓝中的残留量0.08 mg/kg,在土壤中的残留量0.05 mg/kg。[结论]建立的检测方法准确可靠,甘蓝收获时残留量低于中国规定的最大残留限量(MRL)。  相似文献   

20.
《农药》2016,(10)
[目的]评价呋虫胺在水稻田中的安全性,对呋虫胺及其代谢物在水稻植株、土壤、田水中的消解动态和糙米、稻壳、植株、土壤中最终残留水平进行研究。[方法]样品用甲醇和乙腈混合溶液提取,提取液经SPE小柱净化,UPLC-MS/MS检测。[结果]呋虫胺及其代谢物DN、UF在糙米、稻壳、水稻植株、稻田土壤、稻田水中的平均回收率在75.7%~99.5%之间、相对标准偏差在1.18%~7.11%之间;呋虫胺最小检出量为1×10~(-13) g,呋虫胺代谢物DN、UF最小检出量为5×10~(-13) g,在糙米、稻壳、水稻植株、稻田土壤、稻田水中的最低检测质量分数分别为0.05、0.05、0.05、0.05、0.005 mg/kg,实现了对呋虫胺及其代谢物DN、UF同时测定。呋虫胺在植株和田水中的降解半衰期分别为4.3、2.4 d,在糙米中的残留量均低于CAC、欧盟和日本规定的最大残留限量(中国尚未规定呋虫胺在糙米中的最大残留限量值)。[结论]该方法简单可靠,符合农药残留分析要求,可用于糙米、稻壳、水稻植株、稻田土壤、田水中呋虫胺及其代谢物的残留检测。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号