共查询到19条相似文献,搜索用时 62 毫秒
1.
储能用锂离子电池管理系统研究 总被引:1,自引:0,他引:1
锂离子电池因其性能优异在高电压大容量的储能系统得到了广泛的应用。锂离子电池管理系统是延长电池循环寿命,维护电池安全运行的关键。针对储能用锂离子电池的特性,该文讨论了储能用锂离子电池管理系统的结构,重点介绍了电池管理系统的主要功能,特别是单体电池数据采集功能、电池状态估计功能和均衡管理功能,并分析了状态估计和均衡管理方法的优缺点,对其实现策略进行了评价。 相似文献
2.
分析电池不一致性的类型及其对容量利用率的影响,推导在线动态单向均衡和在线动态双向均衡所需的最大均衡电流与工作场景的关系。随后以实际应用中的2种典型工况为例,对比核算2种均衡方式所需均衡电流的大小。分析发现,在线全区间双向均衡有更高的电池容量利用率,且所需的均衡电流更小。 相似文献
3.
锂离子电池可作为后备电源为电力系统的一次设备、二次设备及通信管理等提供不同等级的交直流电,保证核心设备紧急时刻仍然能够正常工作。先串后并的并联型储能系统不仅因并联模组的互为备用具有更高的可靠性,也能够避免传统串联型后备电源的木桶效应问题。然而,并联型方案会因模组之间的不一致,使得各模组寿命呈现差异性;串联电池组组内电压分布差异,也会导致电池单体过充或者过放。为此提出了一种针对并联型锂离子电池储能系统的多时间尺度均衡方法。首先,对电池模组组内单体以荷电状态(state of charge,SOC)为指标进行旁路均衡,使电池组在单次充放电循环的短时间尺度达到组内均衡;然后,通过并联电池模组组间的寿命均衡,使系统在寿命衰减的长时间尺度达到平衡。所提均衡方法能够提高并联型储能系统使用过程中模组间的一致性,增强并联模组互为备用的可靠性,降低运维成本,提高锂离子电池的使用效率。为了验证该均衡方法,在电池加速老化实验的基础上,搭建仿真模型验证了所提方法在不同条件下的有效性。 相似文献
4.
伴随着大型电化学储能项目的大量投产,如何保证大容量储能电池的本质安全成为亟待解决的问题.本文回顾了本质安全概念的演变,介绍了本质安全的内涵.参考煤矿行业本质安全型蓄电池的设计规范,提出了电池储能本质安全分级方案,将电池储能安全等级分为本质安全、非本质安全以及不安全三类.针对储能电池以模组和集装箱形式运行的现状,根据不同的组成形式,将电池储能的本质安全区分为电芯、模组以及集装箱系统三个层面的理解,并分别对其本质安全性进行论述.针对储能电池电芯的本质安全梳理了不同方向的技术路线,围绕水系电池、固态电池和安全剂注入三种技术路线,对其研究与应用进展进行深入探讨,并提出了不同技术路线面临的本质安全挑战,展望了未来大容量储能电池的本质安全应用前景. 相似文献
5.
6.
7.
8.
9.
针对大规模链式电池储能系统,提出一种分层式并行均衡器。该均衡器采用两层主动均衡:第1层均衡可实现电池系统中所有单体电池同时进行能量均衡,均衡速度快且不受串联单体电池数目的影响;第2层均衡可实现来自不同电池组的多个电池单元的并行均衡充、放电,均衡速度快、效率高。该文对均衡器工作原理和均衡控制策略进行分析,为验证所提均衡方法的有效性,搭建由12个单体锂离子电池串联组成的电池系统实验平台进行均衡实验。理论和实验结果均表明,该均衡拓扑的均衡速度快、均衡效率高、模块化强、易扩展。 相似文献
10.
良好的热管理设计是保证电池储能装置使用性能及寿命的关键。大容量电池储能装置因电池单体多,内部结构复杂,开展详细的热管理数值分析难度很大。本工作提出了电池模块的多孔介质模化方法,并针对MW级集装箱式大容量电池储能空气冷却热管理系统开展流热耦合数值分析。研究表明,该方法实现了电池舱和电池模块内部流动传热的耦合计算,考虑了其相互影响,能获得更为丰富而准确的热管理系统流动传热特性。各电池模块内的空气流量分配不均,电池舱气流及热量积聚形成的流场、温度场特性,是造成电池模块温度差异的主要原因。本工作提出的研究方法可为大容量集中式电池储能热管理系统的设计和优化提供借鉴。 相似文献
11.
12.
13.
14.
李建林 《电网与水力发电进展》2012,28(12):61-65
总结介绍了6种常用的控制方法,阐述各自工作原理以及优缺点,针对一实际算例,就能量型与功率型储能系统,设计了其DC/DC和DC/AC控制策略及DC/AC滤波环节,并给予Matlab/Simulink仿真平台搭建风储系统仿真模型。通过仿真结果表明,所设计控制策略下的电池储能能够平滑风电输出的波动,达到并网要求,2种不同类型的储能电池,能够优势互补,利于延长储能电池寿命。 相似文献
15.
16.
智能社区电池储能监控系统采用分层的设计方案,最低层为设备层,包括储能逆变器(PCS)、电池管理系统(BMS)、智能电表、电压采集模块、电流采集模块、用于控制与分析的FPGA开发板、断路器等;中间层为通信层,所有的硬件设备通过通信模块接入网络交换机,数据交换通过以太网实现,软件部分实现与这些硬件设备的通信协议,如IEC ... 相似文献
17.
《电力与能源》2022,(1)
智能社区电池储能监控系统采用分层的设计方案,最低层为设备层,包括储能逆变器(PCS)、电池管理系统(BMS)、智能电表、电压采集模块、电流采集模块、用于控制与分析的FPGA开发板、断路器等;中间层为通信层,所有的硬件设备通过通信模块接入网络交换机,数据交换通过以太网实现,软件部分实现与这些硬件设备的通信协议,如IEC 60870-5-104通信协议、Modbus/TCP通信协议等;最上层为电池储能监控系统应用层,用LabVIEW集成开发环境实现多种功能模块,如数据采集与处理、控制功能、画面显示、报警功能、数据统计、多种曲线显示等,可满足运行人员的各种需要,实现储能电站与新能源发电站联合调度目的,电池储能监控系统同时接受上级电网调度,按电网调度的要求吸收或释放电能。 相似文献
18.
电池储能系统参与电网调频的优势分析 总被引:1,自引:0,他引:1
针对目前因大规模新能源并入电网等而引发的频率稳定问题,对传统调频技术存在的固有缺陷、大规模风电并入电网影响频率稳定的规律进行了分析。基于电池储能系统功率-频率特性、响应快与短时功率吞吐能力强的优点,分析得出电池储能系统适合作为新的辅佐传统电力一、二次调频技术的新手段。与传统调频机组在调频效果上的定量比较,以及国内外政策的分析,来论证电池储能系统参与电网调频的优势与前景。 相似文献
19.