首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
尾缘厚度对风力机翼型气动特性影响参数化研究   总被引:3,自引:0,他引:3  
该文拟从气动性能角度考察钝尾缘厚度对风力机翼型气动特性的影响.采用美国NREL带有试验数据的风力机专用翼型S814和S827,通过XFOIL软件对翼型尾缘厚度参数化处理.在最大厚度、弯度和弦宽不变的条件下,尾缘厚度相对于弦长在0.5%~5.0%范围变化.数值计算分析认为,尾缘厚度在一定范围增大时,翼型升力系数有明显提升,同时阻力系数也持续增大,升阻比则呈先增后降趋势,研究翼型尾缘厚度在1.5%(相对弦长)附近其升力系数和升阻比同时达到最佳.研究结论可供风力机叶片设计时量化参考.  相似文献   

2.
对S809和S805 2种厚度不同的翼型进行尾缘修剪,采用翼型设计分析软件Xfoil对修剪前后翼型的气动性能进行计算,研究了不同程度尾缘修剪对翼型气动性能的影响,并采用CFD数值模拟方法进行流场特性分析.结果表明:尾缘修剪后会引起翼型在附着流区升力系数减小,最大升阻比减小,减小程度随着修剪程度的增加而加剧;对于厚度不同的翼型,尾缘修剪对其影响的主要区别在于失速区较厚翼型阻力系数减小,较薄翼型升力系数增大;翼型表面压力系数因尾缘修剪而发生改变,较厚翼型压力分布变化较为明显;尾缘修剪对尾流的扰动会影响翼型表面其他部位的流动,进而影响翼型气动性能.  相似文献   

3.
《动力工程学报》2016,(6):473-479
通过对柔性尾缘襟翼(DTEF)参数化建模,实现了对尾缘襟翼柔性变形与控制.采用数值模拟方法研究DTEF对翼型整体静态与动态气动性能的影响及流动机理.结果表明:DTEF位于不同摆角时,翼型升力系数与阻力系数均有不同程度的明显改变,随着攻角的增大,襟翼改变翼型气动性能的能力降低,对襟翼附近的流动影响亦减弱;DTEF动态运动过程中,翼型升力系数滞后于摆角的变化,DTEF改变升力系数的能力降低,翼型阻力系数超前于摆角的变化,DTEF改变阻力系数的能力增加,此动态效应随摆动周期减小而增强,并在翼型表面压力系数与尾迹涡量上有一定体现.  相似文献   

4.
为分析齿形襟翼(SGF)尾缘对风力机翼型气动性能及噪声特性的影响,利用SST k-ω湍流模型对装设Gurney襟翼(GF)和SGF的NACA0018翼型进行数值模拟,研究齿高和齿宽对气动性能和静压分布的影响,并采用大涡模拟(LES)对气动性能最优的SGF进行噪声预估和涡结构分析。结果表明:SGF可有效提高翼型升力系数并延迟失速;SGF-0.8-6.7模型可使最大升阻比提高8.61%,失速攻角延迟3°,其在拓宽高升力区间、延迟失速等方面具有最优性能;SGF翼型上下翼面噪声无明显差异,平均声压级随攻角增大而提高;SGF-0.8-6.7模型的尾迹噪声随攻角增大呈现先增后减的变化趋势,随距离增加而降低;翼型辐射噪声呈典型偶极子状,GF噪声小攻角下降低,而大攻角下则增大,SGF在不同攻角下均降噪显著,最大降噪量达10.2 dB;SGF尾涡稳定有序,能耗及损失降低,由此使气动性能和噪声得以明显改善。  相似文献   

5.
基于RANS方程大型风力机翼型钝尾缘修型气动性能计算   总被引:3,自引:0,他引:3  
通过耦合求解二维定常RANS方程和基于线性稳定性分析的转捩预测程序,计算了DU97-Flat翼型的气动性能并与实验结果进行比较,结果表明该文方法可进行有钝尾缘厚度翼型的气动性能计算。使用耦合求解方法,以DU97-W-300翼型为例,计算几种常见的风力机翼型钝尾缘修型方法(直接截断、对称加厚、不对称加厚和翼面旋转等)得到的钝尾缘翼型的气动性能,并分析各种修型方法对气动性能的影响。结果表明:直接截断修型方法并未增加此翼型的升力系数但对阻力增加的影响最小;不对称增加厚度引起的升力系数增加最明显,但会引起翼型使用角度区域的移动;通过指数因子形式对称增加时,指数因子在1.8~2.5之间较适中。  相似文献   

6.
为了研究襟翼结构对风力机翼型气动性能的影响,选用NACA0012翼型,建立了翼型加装襟翼的二维计算模型,使用计算流体力学软件Fluent求解定常、不可压缩雷诺平均的N-S方程和Spalart-Allmaras单方程湍流模型,分析了典型的NACA0012翼型添加不同几何形状襟翼在0°~18°攻角α范围内的气动特性。通过计算表明:在风力机翼型上添加不同结构襟翼,能够提高翼型的有效升力系数,添加同样高度和厚度的三角形襟翼比添加矩形襟翼时的升力系数要大,而阻力变化甚小;因此,选择适当的几何形状襟翼不仅能起到增升效果且能相应的节省材料从而改善其经济性。  相似文献   

7.
为提升垂直轴风力机气动性能并改善其动态失速特性,将射流襟翼布置于翼型尾缘压力面,并提出5种射流控制策略,采用计算流体力学方法研究不同策略对垂直轴风力机气动性能影响,从而确定最佳控制策略。结果表明:在180°~360°相位角范围内施加射流控制可使风力机风能利用系数在最佳尖速比下提升31.31%,并有效抑制吸力面尾缘涡形成与发展,增大翼面两侧压差;射流越靠近尾缘,垂直轴风力机气动性能提升效果越好。  相似文献   

8.
采用数值模拟方法研究襟翼改型对S809翼型气动特性的影响,并对襟翼的增升机理进行探讨。研究结果表明,在中小攻角范围内,安装角度为90°和60°的襟翼具有一定的增升效果,可使最大升力系数分别提高5.66%和3.95%;通过分析翼型压力系数分布,发现尾缘附近压力面压力变大,导致升力系数提高;但是在大攻角下改型襟翼导致升力系数减小。  相似文献   

9.
风力机翼型气动特性数值模拟   总被引:6,自引:0,他引:6  
采用CFD软件Fluent对美国NREL两种风力机翼型S825和S827进行了二维数值模拟,研究了不同网格密度、不同湍流模型对风力机翼型气动特性的影响,并与试验结果进行了对比分析。通过对3种网格密度(4万、7万和10万网格节点)及3种湍流模型(S-A、Standard k-ε和Standard k-ω模型)的数值模拟标定,得出由Fluent软件进行风力机翼型数值模拟时,采用约7万网格节点、近壁Y~+10时达到网格无关,S-A湍流模型进行气动性能预测相对精度较高,为风力机翼型气动设计提供了快速有效地数值仿真性能检测手段,具有较高工程实用价值。  相似文献   

10.
为研究三角襟翼对风力机叶片翼型气动特性的影响,将三角襟翼加至NACA4412翼型尾缘,建立其二维襟翼计算模型,基于CFD数值模拟方法分析不同宽度和长度的三角襟翼在0°~18°攻角范围内的气动特性,得到了各攻角下升阻力系数、升阻比及翼型壁面压强分布曲线。结果表明:增加襟翼长度,使得翼型升阻比减小,失速攻角提前,增加襟翼宽度,使得翼型升阻比增大,失速攻角延后,因此适当减小三角襟翼的长度和增加其宽度有助于提高翼型的气动特性,将翼型尾缘5%部分作为空间生成襟翼,与传统襟翼相比,节省了制造材料和空间。  相似文献   

11.
基于翼型参数化方法对翼型S809进行两类不同的前缘修改,采用翼型设计分析软件Xfoil对修改前、后的翼型进行气动性能计算分析,并采用计算流体力学(CFD)数值模拟方法进行流场特性分析。结果表明:翼型前缘下弯使得翼型在失速区升力系数增大,阻力系数减小,俯仰力矩系数减小,转捩现象延迟,翼型前缘上弯对气动性能的影响与之相反;翼型前缘上弯和下弯使得翼型表面压力系数分布均匀,吸力面及压力面压力系数增大;翼型前缘下弯能够抑制流动分离,抑制涡的形成,延迟翼型失速,翼型前缘上弯对翼型流场特性的影响则与之相反。  相似文献   

12.
风力机叶片翼型气动性能数值模拟   总被引:1,自引:0,他引:1  
采用数值模拟方法对NACA23012,NACA4412,S809,S810等4种常用风力机叶片翼型进行了研究,分析了翼型静止与振荡时的气动性能.随着攻角的增加,静止翼型的升力系数先增大后减小,其阻力系数一直增大,显示出NACA4412翼型具有较好的低风速启动性能;振荡翼型的升力系数随着攻角的变化呈现一个闭合迟滞环曲线,显示出振荡翼型S809的动态失速迟滞效应最为明显.文章参照模拟结果和对比试验数据,验证了数值模拟的可靠性.  相似文献   

13.
为改善H型垂直轴风力机(VAWT)的气动特性,文章研究了6种翼型型线改变后的翼型对H型VAWT气动特性的影响,并进行了数值模拟计算和风洞试验。风洞试验验证了模拟计算的结果,证明了型线改变后的风力机对提高气动性有积极的作用。试验结果表明:1波浪型风机和Dimple型风机均可在一定叶尖速比(λ)范围内提高风力机的风能利用率,其中1波浪型风力机在低λ下最高可提高风能利用率13.76%,其单叶片切向力在下游区明显增大;Dimple型风力机在高λ下最高可提高风能利用率14.6%,其单叶片切向力在上游区明显增大。两种改型后的翼型均可改善流动分离,并提高VAWT的气动性能。  相似文献   

14.
江波  韩中合 《节能》2012,31(9):40-42
风力机翼型气动性能分析是风力机气动设计和运行优化的重要基础。采用NUMECA软件对弯度为4%的风力机NACA4412翼型进行气动数值模拟,并与实验数据进行比较,取得比较一致的结果。在此基础上,对NACA2412、NACA4412、NACA6412不同弯度的翼型进行模拟分析,对三种翼型在不同攻角下的气动性能进行了比较,为风力机翼型弯度选择和翼型改型设计提供参考意见。  相似文献   

15.
为了提升垂直轴风力机获能效率,为风力机叶片加装格尼襟翼并对格尼襟翼进行改进,通过数值模拟研究了两种格尼襟翼对不同实度的垂直轴风力机气动性能的影响。研究发现:当尖速比为3.1、实度为0.250时,原始格尼襟翼可提升10.92%的风能利用系数,改进型格尼襟翼可提升17.92%。在不同实度,改进型格尼襟翼在高尖速比时可较好地提升气动性能,而原始格尼襟翼在低尖速比时可较好地提升气动性能。当实度增大时,由于叶片间尾迹影响加剧而导致风能利用系数下降,但载荷波动情况得到改善;当实度为0.416时,载荷波动最小。  相似文献   

16.
为有效利用城市风能,提高风力机运行效率,需对建筑体下游风力机位置分布开展研究。采用计算流体力学方法分析不同建筑体结构下游各位置处风速及风力机气动性能。结果表明:建筑体对自由来流的阻塞、加速与偏转作用可有效提高下游部分位置处风速,提升风力机气动性能;圆形建筑体对下游流场影响较小,各位置处平均风速接近自由来流;相比之下,三角形与四边形建筑体下游风速波动较为剧烈,平均风速较高,风力机转矩较圆形建筑体下游风力机的有较大提升;对于相同外廓建筑体,立式矩形较大的受风面积可扩大其背风低压区范围,有效提高下游流场风速,较卧式矩形建筑体具有更好的聚风效果。  相似文献   

17.
D. D. Chao  C. P. van Dam 《风能》2007,10(6):529-550
The effects of modifying the inboard portion of the experimental NREL Phase VI rotor using a thickened, blunt trailing‐edge (or flatback) version of the S809 design airfoil are studied using a compressible, three‐dimensional, Reynolds‐averaged Navier–Stokes method. A motivation for using such a thicker airfoil design coupled with a blunt trailing edge is to alleviate structural constraints while reducing blade weight and maintaining the power performance of the rotor. The numerical results for the baseline Phase VI rotor are benchmarked against wind tunnel measurements obtained at freestream velocities of 5, 7 and 10ms?1. The calculated results for the modified rotor are compared against those of the baseline rotor. The results of this study demonstrate that a thick, blunt trailing‐edge blade profile is viable as a bridge to connect structural requirements with aerodynamic performance in designing future wind turbine rotors. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

18.
利用流体分析软件Fluent对NACA4415与SD7043两种常见翼型进行流场模拟,从外形特征分析两者的气动性能差异,进一步利用翼型分析软件profili的翼型设计功能,结合两种翼型的长处,设计出新的翼型,并对新翼型与原有翼型在升阻特性上的差异进行分析,对比发现新翼型气动性能更优。最后利用新翼型基于Solidworks设计出一款小型风力发电机叶片。  相似文献   

19.
The study presents and compares aerodynamic simulations for an airfoil section with an adaptive trailing edge flap, which deflects following a smooth deformation shape. The simulations are carried out with three substantially different methods: a Reynolds‐averaged Navier–Stokes solver, a viscous–inviscid interaction method and an engineering dynamic stall model suitable for implementation in aeroelastic codes based on blade element momentum theory. The aerodynamic integral forces and pitching moment coefficients are first determined in steady conditions, at angles of attack spanning from attached flow to separated conditions and accounting for the effects of flap deflection; the steady results from the Navier–Stokes solver and the viscous–inviscid interaction method are used as input data for the simpler dynamic stall model. The paper characterizes then the dynamics of the unsteady forces and moments generated by the airfoil undergoing harmonic pitching motions and harmonic flap deflections. The unsteady aerodynamic coefficients exhibit significant variations over the corresponding steady‐state values. The dynamic characteristics of the unsteady response are predicted with an excellent agreement among the investigated methods at attached flow conditions, both for airfoil pitching and flap deflection. At high angles of attack, where flow separation is encountered, the methods still depict similar overall dynamics, but larger discrepancies are reported, especially for the simpler engineering method. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
Effects of leading edge erosion on wind turbine blade performance   总被引:1,自引:0,他引:1  
This paper presents results of a study to investigate the effect of leading edge erosion on the aerodynamic performance of a wind turbine airfoil. The tests were conducted on the DU 96‐W‐180 wind turbine airfoil at three Reynolds numbers between 1 million and 1.85 million, and angles of attack spanning the nominal low drag range of the airfoil. The airfoil was tested with simulated leading edge erosion by varying both the type and severity of the erosion to investigate the loss in performance due to an eroded leading edge. Tests were also run with simulated bugs on the airfoil to assess the impact of insect accretion on airfoil performance. The objective was to develop a baseline understanding of the aerodynamic effects of varying levels of leading edge erosion and to quantify their relative impact on airfoil performance. Results show that leading edge erosion can produce substantial airfoil performance degradation, yielding a large increase in drag coupled with a significant loss in lift near the upper corner of the drag polar, which is key to maximizing wind turbine energy production. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号