共查询到19条相似文献,搜索用时 62 毫秒
1.
2.
3.
近年来我国风力发电、太阳能发电的装机并网规模迅速增加。如何科学、准确、全面地评估可再生能源发展所带来的生态环境影响也成为政府、学界和公众普遍关注的问题。在众多的评估方法中,生命周期评价是一种常见和有代表性的方法。该方法起源于西方并逐渐引入我国,已经在我国可再生能源领域的研究中有所应用。本文综述了生命周期评价的生产流程分析法、环境扩展的投入产出法以及混合分析方法等方法学研究进展,然后综述了基于上述方法学的我国可再生能源领域的有关研究进展,包括生命周期方法的应用、本土数据库的发展以及影响评价方法的进展。认为研究高技术单元分辨率的混合生命周期研究方法、拓展建立本土化生命周期评价数据库和开发标准化的生命周期评价指标体系是我国可再生能源生命周期评价研究发展中应注意的问题。 相似文献
4.
大中型沼气工程生命周期能效评价 总被引:2,自引:0,他引:2
基于生命周期评价理论,对山东某沼气工程进行了能效评价。研究得出,该沼气工程生命周期总能耗(折合标准煤)为561 471.47 kg/a(11.54 kg/GJ),其中,化石能耗占96.62%;节能量为1 100 271.42 kg/a;生命周期综合能源利用率为61.82%;生命周期新水耗量为26 552.56 m3/a。利用Sima Pro 8.0.2软件,采用生态指数法分析得出,该沼气工程生命周期产生的环境影响为364.303 3 k Pt/a(7.480 5 Pt/GJ);通过情景分析得出,沼气工程的环境损害减弱能力为191.805 2 k Pt/a(34.49%)。针对该沼气工程存在的一些问题,提出了开发沼液综合利用技术等建议,为提高沼气工程能效、减少环境损害提供理论参考。 相似文献
5.
《动力工程学报》2016,(12):1000-1009
基于生命周期评价理论,建立风力发电、光伏发电及燃煤发电的生命周期评价体系,研究生命周期各阶段的环境负荷并进行对比分析.结果表明:在电厂建设阶段,燃煤发电碳足迹最低,为1.94g/(kW·h),风力发电碳足迹最高,为9.42g/(kW·h).在发电运营阶段,光伏发电碳足迹几乎为零,风力发电碳足迹为0.2g/(kW·h),燃煤发电机组碳足迹最高,为83.3g/(kW·h).风力发电和光伏发电在电厂建设阶段碳足迹占比较高,分别为99.4%和99.78%;燃煤发电在发电运营阶段碳足迹占比最高,为96.13%.在整个生命周期中对全球变暖影响最大的是燃煤发电,为3.63×10~(-5)标准当量,影响最小的是风力发电,为7.9×10~(-7)标准当量;对环境酸化影响最大的是光伏发电,为6.7×10~(-6)标准当量,影响最小的是风力发电,为1.6×10~(-7)标准当量;风力发电和光伏发电的固体废弃物排放几乎为零. 相似文献
6.
7.
文章系统回顾了中国农业沼气工程的生命周期评估(LCA)研究,以生产利用1 MJ沼气为统一功能单位,对其环境影响进行了定量的对比分析。研究结果表明:受系统边界和参考系统选择等因素的影响,中国农业沼气工程LCA研究的结果差别很大,但大都能显著减少化石能源消耗和温室气体(GHG)排放;中国农业沼气工程生命周期能耗为0.01~0.76 MJ/MJ,节能收益最高可达2.27 MJ/MJ,利用煤炭加热保温是高能耗的最主要因素;中国农业沼气工程生命周期的GHG排放为9~219 g/MJ,GHG减排收益为33~787 g/MJ,其在环境酸化、富营养化和光化学氧化等环境影响方面的效益有待更多的研究确认。 相似文献
8.
9.
10.
11.
Nowadays the biggest challenge for most organizations is a real and substantial application of sustainability through the measurement and comparability of results in order to satisfy the principles of sustainability of all the stakeholders. Definitively, it is necessary to pursue sustainability through the measurements of specific indicators and control the variables that influence the state of the economic, social and environmental issues. The aim of this paper is to contribute to the development of a comprehensive, yet practical and reliable tool for a systematic sustainability assessment, based on the Life Cycle Assessment (LCA) and the Analytic Hierarchy Process (AHP) to support decision makers in complex decision problems in the field of environmental sustainability. The results are applied to a novel compressed air energy storage system proposed as a suitable technology for the energy storage in a small scale stand-alone renewable energy power plant (photovoltaic power plant) that is designed to satisfy the energy demand of a radio base station for mobile telecommunications. The outcome is a dynamic analysis and iterative integrated sustainability assessment of corporate performance. 相似文献
12.
13.
Murat KucukvarOmer Tatari 《Energy》2011,36(11):6352-6357
Algae cofiring scenarios in a 360 MW coal power plant were studied utilizing an ecologically based hybrid life cycle assessment methodology. The impacts on the ecological system were calculated in terms of cumulative mass, energy, industrial exergy, and ecological exergy. The environmental performance metrics, including efficiency, loading, and renewability ratios were also quantified to assess the sustainability of cofiring scenarios from a holistic perspective. The analysis results revealed that cumulative mass and ecological exergy consumption were higher for algae cofiring compared to single coal firing due to high material and energy inputs for the algae cultivation. On the contrary, total energy and industrial exergy utilization were reduced with an increasing share of algae cofiring where algae is dried with solar energy. Additionally, natural gas dried algae cofiring scenarios had a lower renewability ratio in comparison with single coal firing. The results of this study are vital for the policy makers to decide on more environmentally friendly algae cofiring options by considering the potential impacts on ecological system. 相似文献
14.
Slobodan Cvetković Tatjana Kaluđerović Radoičić Bojana Vukadinović 《Energy Sources, Part A: Recovery, Utilization, and Environmental Effects》2016,38(20):3095-3102
The aim of this paper was to present the energy flows in the life cycle of biogas utilization systems (cogeneration and transportation), as well as their mutual relations, starting from providing the feedstock for digestion through to end-of-life management of biogas system as fertilizer on agricultural land. This study was carried out through the energy analysis of two scenarios (biogas in cogeneration and biogas in transportation) using performance of Mirotin biogas plant (1 MW) in Serbia. Results obtained in this study have shown that the analyzed scenario (biogas in cogeneration and biogas in transportation) have positive energy balances (52,114 and 53,585 GJ) and these scenarios are sustainable from energetic point of view. 相似文献
15.
Life Cycle Assessment (LCA) has been applied within the residential building sector of two buildings, one in each a developed (Spain) and a developing (Colombia) country. The main goal of this paper involves the environmental loads and also brings together the operational energy for activities during the operation phase such as HVAC, domestic hot water, electrical appliances, cooking and illumination. The present research compares two real scenarios: Situation 1, where 100% of the dwelling’s energy is supplied with electricity only and Situation 2, where dwellings can be operated with natural gas plus electricity. 相似文献
16.
Energy storage systems are becoming more important for load leveling, especially for widespread use of intermittent renewable energy. Compressed air energy storage (CAES) is a promising method for energy storage, but large scale CAES is dependent on suitable underground geology. Micro-CAES with man-made air vessels is a more adaptable solution for distributed future power networks. In this paper, energy and exergy analyses of a micro-CAES system are performed, and, to improve the efficiency of the system, some innovative ideas are introduced. The results show that a micro-CAES system could be a very effective system for distributed power networks as a combination that provides energy storage, generation with various heat sources, and an air-cycle heating and cooling system, with a energy density feasible for distributed energy storage and a good efficiency due to the multipurpose system. Especially, quasi-isothermal compression and expansion concepts result in the best exergy efficiencies. 相似文献
17.
Ahmet Ozbilen Ibrahim Dincer Marc A. Rosen 《International Journal of Hydrogen Energy》2011,36(17):11321-11327
In this paper, a comparative environmental study is reported of the Cu-Cl water-splitting cycle with various other hydrogen production methods: the sulphur-iodine (S-I) water-splitting cycle, high temperature water electrolysis, conventional steam reforming of natural gas and hydrogen production from renewable resources. The investigation uses life cycle assessment (LCA), which is an analytical tool to identify and quantify environmentally critical phases during the life cycle of a system or a product and/or to evaluate and decrease the overall environmental impact of the system or product. The LCA results for the hydrogen production processes indicate that the thermochemical cycles have lower environmental impacts while steam reforming of natural gas has the highest. 相似文献
18.
The thermal performance of power generating and consuming devices can be improved significantly, both during design and operation. This is especially important in eastern and central European countries during their transition to a market environment. A solution can be sought by combining exergy and economic analyses. The performances of conventional power plants and nuclear power plants are discussed, based on the exergy concept. It is proposed to define the entire nuclear plant efficiency by the system coefficient of performance. 相似文献
19.
Before new technologies enter the market, their environmental superiority over competing options must be asserted based on a life cycle approach. However, when applying the prevailing status-quo Life Cycle Assessment (LCA) approach to future renewable energy systems, one does not distinguish between impacts which are ‘imported’ into the system due to the ‘background system’ (e.g. due to supply of materials or final energy for the production of the energy system), and what is the improvement potential of these technologies compared to competitors (e.g. due to process and system innovations or diffusion effects). This paper investigates a dynamic approach towards the LCA of renewable energy technologies and proves that for all renewable energy chains, the inputs of finite energy resources and emissions of greenhouse gases are extremely low compared with the conventional system. With regard to the other environmental impacts the findings do not reveal any clear verdict for or against renewable energies.Future development will enable a further reduction of environmental impacts of renewable energy systems. Different factors are responsible for this development, such as progress with respect to technical parameters of energy converters, in particular, improved efficiency; emissions characteristics; increased lifetime, etc.; advances with regard to the production process of energy converters and fuels; and advances with regard to ‘external’ services originating from conventional energy and transport systems, for instance, improved electricity or process heat supply for system production and ecologically optimized transport systems for fuel transportation.The application of renewable energy sources might modify not only the background system, but also further downstream aspects, such as consumer behavior. This effect is, however, strongly context and technology dependent. 相似文献