首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biometrics, which use human physiological or behavioral features for personal identification, currently face the challenge of designing a secure biometric system that will accept only the legitimate presentation of the biometric identifiers without being fooled by the doctored or spoofed measurements that are input into the system. More biometric traits are required for improving the performance of authentication systems. In this paper, we present a new number for the biometrics family, i.e. tongueprint, which uses particularly interesting properties of the human tongue to base a technology for noninvasive biometric assessment. The tongue is a unique organ which can be stuck out of the mouth for inspection, whose appearance is amenable to examination with the aid of a machine vision system. Yet it is otherwise well protected in the mouth and difficult to be forged. Furthermore, the involuntary squirm of the tongue is not only a convincing proof that the subject is alive, but also a feature for recognition. That is to say, the tongue can present both static features and dynamic features for authentication. However, little work has hitherto been done on the tongue as a biometric identifier. In this work, we make use of a database of tongue images obtained over a long period to examine the performance of the tongueprint as a biometric identifier. Our research shows that tongueprint is a promising candidate for biometric identification and worthy of further research.  相似文献   

2.
This paper investigates an information theoretic approach for formulating performance indices for the biometric authentication. Firstly, we formulate the constrained capacity, as a performance index for biometric authentication system for the finite number of users. Like Shannon capacity, constrained capacity is formulated using signal to noise ratio which is estimated from known statistics of users’ biometric information in the database. Constrained capacity of a user and of biometric system is fixed, given the database and the matching function. Experimental analysis using real palmprint and hand geometry images illustrates use of constrained capacity to estimate: (i) performance gains from the cohort information, (ii) the effective number of user-specific cohorts for a user and for the biometric system, (iii) information content of biometric features, and (iv) the performance of score level fusion rules for multimodal biometric system. Secondly, this paper investigates a rate-distortion framework for formulating false random correspondence probability as performance of a generic biometric. Our analysis concludes that constrained capacity can be a promising addition to performance of a biometric system. Similarly, individuality expressed as false random correspondence probability can be the performance index of a biometric trait.  相似文献   

3.
Automated biometric systems have emerged as a more reliable alternative to the traditional personal identification solutions. One of the most popular biometrics is hand shape due to its ease of use, non-intrusiveness and public acceptance. This paper presents a survey of the technology used in hand shape-based biometric systems. We first review the component modules including the algorithms they employ. Next we discuss system taxonomies, performance evaluation methodologies, testing issues and US government evaluations. A summary of the accuracy results reported in the literature is also provided. We next describe some of the commercial hand shape biometric systems as well as some recent successful deployments. Finally, we mention a few limitations of the hand shape biometric and give some directions for future research.  相似文献   

4.
This work addresses the problem of deformable hand shape recognition in biometric systems without any positioning aids. We separate and recognize multiple rigid fingers under Euclidean transformations. An elliptical model is introduced to represent fingers and accelerate the search of optimal alignments of fingers. Unlike other methods, the similarity is measured during alignment search based on finger width measurements defined at nodes by controllable intervals to achieve balanceable recognition accuracy and computational cost. Technically, our method bridges the traditional handcrafted-feature methods and the shape-distance methods. We have tested it using our 108-person-540-sample database with significantly increased positive recognition accuracy.  相似文献   

5.
The baseline corpus of a new multimodal database, acquired in the framework of the FP6 EU BioSec Integrated Project, is presented. The corpus consists of fingerprint images acquired with three different sensors, frontal face images from a webcam, iris images from an iris sensor, and voice utterances acquired both with a close-talk headset and a distant webcam microphone. The BioSec baseline corpus includes real multimodal data from 200 individuals in two acquisition sessions. In this contribution, the acquisition setup and protocol are outlined, and the contents of the corpus—including data and population statistics—are described. The database will be publicly available for research purposes by mid-2006.  相似文献   

6.
Reliable and accurate verification of people is extremely important in a number of business transactions as well as access to privileged information. Automatic verification methods based on physical biometric characteristics such as fingerprint or iris can provide positive verification with a very high accuracy. However, the biometrics-based methods assume that the physical characteristics of an individual (as captured by a sensor) used for verification are sufficiently unique to distinguish one person from another. Identical twins have the closest genetics-based relationship and, therefore, the maximum similarity between fingerprints is expected to be found among identical twins. We show that a state-of-the-art automatic fingerprint verification system can successfully distinguish identical twins though with a slightly lower accuracy than nontwins.  相似文献   

7.
This article focuses on the evaluation of a biometric technique based on the performance of an identifying gesture by holding a telephone with an embedded accelerometer in his/her hand. The acceleration signals obtained when users perform gestures are analyzed following a mathematical method based on global sequence alignment. In this article, eight different scores are proposed and evaluated in order to quantify the differences between gestures, obtaining an optimal EER result of 3.42% when analyzing a random set of 40 users of a database made up of 80 users with real attempts of falsification. Moreover, a temporal study of the technique is presented leeding to the need to update the template to adapt the manner in which users modify how they perform their identifying gesture over time. Six updating schemes have been assessed within a database of 22 users repeating their identifying gesture in 20 sessions over 4 months, concluding that the more often the template is updated the better and more stable performance the technique presents.  相似文献   

8.
This paper presents a method for finding cutting paths on a 3D triangular mesh surface to reduce the stretch in the flattened surface. The cutting paths link the surface boundary and the nodes where the Gaussian curvature is high, and their total length is minimized. First, a linear algorithm for computing an approximate boundary geodesic distance map is introduced; the map encapsulates the undirected geodesic distance from every triangular node to the surface boundary approximately. This is followed by determining the undirected shortest paths passing through all the nodes where the Gaussian curvature is larger than a threshold. The cutting paths walk along the triangular edges of the given surface. Compared with other similar approaches, our method reaches a faster speed, and can deal with surfaces with widely distributed curvatures.  相似文献   

9.
Surface development is used in many manufacturing planning operations, e.g., for garments, ships and automobiles. However, most freeform surfaces used in design are not developable, and therefore the developed patterns are not isometric to the original design surface. In some domains, the CAD model is created by interpolating two given space curves. In this paper, we propose a method to obtain a G2 quasi-developable Bezier surface interpolating two arbitrary space curves. The given curves are first split into a number of piecewise Bezier curves and elemental Bezier patches each of which passes through four splitting points are constructed. All neighboring elemental patches are G2 connected and they are assembled optimally in terms of the degree of developability (the integral Gaussian curvature). Experiments show that the final composite Bezier surface is superior to a lofted one which is defined regardless of the final surface developability.  相似文献   

10.
Traditional strategies, such as fingerprinting and face recognition, are becoming more and more fraud susceptible. As a consequence, new and more fraud proof biometrics modalities have been considered, one of them being the heartbeat pattern acquired by an electrocardiogram (ECG). While methods for subject identification based on ECG signal work with signals sampled in high frequencies (>100 Hz), the main goal of this work is to evaluate the use of ECG signal in low frequencies for such aim. In this work, the ECG signal is sampled in low frequencies (30 Hz and 60 Hz) and represented by four feature extraction methods available in the literature, which are then feed to a Support Vector Machines (SVM) classifier to perform the identification. In addition, a classification approach based on majority voting using multiple samples per subject is employed and compared to the traditional classification based on the presentation of single samples per subject each time. Considering a database composed of 193 subjects, results show identification accuracies higher than 95% and near to optimality (i.e., 100%) when the ECG signal is sampled in 30 Hz and 60 Hz, respectively, being the last one very close to the ones obtained when the signal is sampled in 360 Hz (the maximum frequency existing in our database). We also evaluate the impact of: (1) the number of training and testing samples for learning and identification, respectively; (2) the scalability of the biometry (i.e., increment on the number of subjects); and (3) the use of multiple samples for person identification.  相似文献   

11.
In this paper, we study the problem of constructing a family of surfaces from a given spatial geodesic curve. We derive a parametric representation for a surface pencil whose members share the same geodesic curve as an isoparametric curve. By utilizing the Frenet trihedron frame along the given geodesic, we express the surface pencil as a linear combination of the components of this local coordinate frame, and derive the necessary and sufficient conditions for the coefficients to satisfy both the geodesic and the isoparametric requirements. We illustrate and verify the method by finding exact surface pencil formulations for some simple surfaces, such as surfaces of revolution and ruled surfaces. Finally, we demonstrate the use of this method in a garment design application.  相似文献   

12.
In this paper, we propose to use a fourth-order partial differential equation (PDE) to solve a class of surface-blending problems. This equation has three vector-valued shape control parameters. It incorporates all the previously published forms of fourth-order PDEs for surface blending and can generate a larger class of blending surfaces than existing equations. To apply the proposed PDE to the solution of various blending problems, we have developed a fast and accurate resolution method. Our method modifies Naviers solution for the elastic bending deformation of thin plates by making it satisfy the boundary conditions exactly. A comparison between our method, the closed-form solution method, and other existing analytical methods indicates that the developed method is able to generate blending surfaces almost as quickly and accurately as the closed-form solution method, far more efficiently and accurately than the numerical methods and other existing analytical methods. Having investigated the effects that the vector-valued shape parameters and the force function of the proposed equation have on the blending surface, we have found that they have a significant influence on its shape. They provide flexible user handles that surface designers can use to adjust the blending surface to acquire the desired shape. The developed method was employed in the investigation of surface-blending problems where the primary surfaces were expressed in parametric, implicit, and explicit forms.  相似文献   

13.
New computational topology techniques are presented for surface reconstruction of 2-manifolds with boundary, while rigorous proofs have previously been limited to surfaces without boundary. This is done by an intermediate construction of the envelope   (as defined herein) of the original surface. For any compact C2C2-manifold MM embedded in R3R3, it is shown that its envelope is C1,1C1,1. Then it is shown that there exists a piecewise linear (PL) subset of the reconstruction of the envelope that is ambient isotopic to MM, whenever MM is orientable. The emphasis of this paper is upon the formal mathematical proofs needed for these extensions. (Practical application examples have already been published in a companion paper.) Possible extensions to non-orientable manifolds are also discussed. The mathematical exposition relies heavily on known techniques from differential geometry and topology, but the specific new proofs are intended to be sufficiently specialized to prompt further algorithmic discoveries.  相似文献   

14.
Line of curvature on a surface plays an important role in practical applications. A curve on a surface is a line of curvature if its tangents are always in the direction of the principal curvature. By utilizing the Frenet frame, the surface pencil can be expressed as a linear combination of the components of the local frame. With this parametric representation, we derive the necessary and sufficient condition for the given curve to be the line of curvature on the surface. Moreover, the necessary and sufficient condition for the given curve to satisfy the line of curvature and the geodesic requirements is also analyzed.  相似文献   

15.
The fascinating characters of minimal surface make it to be widely used in shape design. While the flexibility and high quality of subdivision surface make it a powerful mathematical tool for shape representation. In this paper, we construct minimal subdivision surfaces with given boundaries using the mean curvature flow, a second order geometric partial differential equation. This equation is solved by a finite element method where the finite element space is spanned by the limit functions of an extended Loop’s subdivision scheme proposed by Biermann et al. Using this extended Loop’s subdivision scheme we can treat a surface with boundary, thereby construct the perfect minimal subdivision surfaces with any topology of the control mesh and any shaped boundaries.  相似文献   

16.
In this paper we compute a mathematical model for the evolution of single crystal with a particular kind of anisotropic surface free energies that yields equilibrium crystal shapes close to octahedrons. Employing the developed model we exhibit the entire evolution path of single crystals to equilibrium with different levels of anisotropic surface free energy. We find that with a mildly anisotropic surface free energy, the crystal morphology is smooth in evolution and evolves to a unique equilibrium crystal shape. With a severely anisotropic surface free energy, edges, corners and faceting by hill-and-valley structures on crystal surface occur. The equilibrium crystal shape reached in computation approaches the analytic octahedron Wulff shape as the anisotropy in the surface free energy becomes more severe.   相似文献   

17.
Reconstruction algorithms make it possible to retrieve a surface from the Delaunay tetrahedralisation (DT) of a point sampling, whose density reflects the surface local geometry and thickness. Most of these algorithms are static and some work remains to be done to handle deforming surfaces. In such case, we defend the idea that each point of the sampling should move with the surface using the information given by the motion to allow fast reconstruction. In this article, we tackle the problem of producing a good evolving sampling of a deforming surface S, and maintaining its DT along the motion. The surface is known only through a projection operator (O 1):ℝ3→S, and a normal operator (O 2) that returns the oriented normal at a point on the surface. On that basis, we offer some perspectives on how reconstruction algorithms can be extended to the tracking of deforming surfaces.  相似文献   

18.
The spreading of a liquid microdrop across a solid surface is examined using the interface formation model. This model allows for variable surface tension at constant temperature and a flow induced Maragoni effect, by incorporating irreversible thermodynamics into the continuum model. The model is solved for small Capillary number and small Reynolds number. This problem has been considered before for much larger drops in Shikhmurzaev (Phys Fluids 9:266, 1997a), which examined the spreading of a drop for ε = τ U CL/R ≪ 1, where U CL is the speed of the moving contact line across the solid surface, τ is the surface tension relaxation time of the viscous liquid, and R is a typical length scale for the size of the drop. This paper extends that work by examining ε = O(1), which will be shown to be the appropriate scaling for very small liquid drops, on the scale of micrometres or less.  相似文献   

19.
Developable surfaces are desired in designing products manufactured from planar sheets. Trimmed non-uniform rational B-spline (NURBS) surface patches are widely adopted to represent 3D products in CAD/CAM. This paper presents a new method to increase the developability of an arbitrarily trimmed NURBS surface patch. With this tool, designers can first create and modify the shape of a product without thinking about the developable constraint. When the design is finished, our approach is applied to increase the developability of the designed surface patches. Our method is an optimisation-based approach. After defining a function to identify the developability of a surface patch, the objective function for increasing the developability is derived. During the optimisation, the positions and weights of the free control points are adjusted. When increasing the developability of a given surface patch, its deformation is also minimised and the singular points are avoided. G0 continuity is reserved on the boundary curves during the optimisetion, and the method to reserve G1 continuity across the boundaries is also discussed in this paper. Compared to other existing methods, our approach solves the problem in a novel way that is close to the design convention, and we are dealing with the developability problem of an arbitrarily trimmed NURBS patch.  相似文献   

20.
Synchronous reactive modelling provides an optimal framework for the modular decomposition of programs that engage in complex patterns of deterministic interaction, such as many real-time and communication entities. This paper presents an approach which includes performance modelling techniques in the synchronous reactive modelling method supported by ESTEREL. It defines a methodology based on timing and probabilistic quantitative constructs that complete the synchronous reactive models. A monitoring mechanism allows the computation of performance results during the simulation. This methodology is applied to study a multithreaded runtime system for a distributed functional programming language. Performance metrics are computed and validated with experimental results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号