首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three UASB reactors were operated at different salinity levels in order to assess the effects on the granular sludge properties. High levels of activity inhibition were observed at sodium concentrations over 7 g Na(+)/L, which resulted in low applicable organic loading rates and VFA accumulation in reactor effluents. However, either sludge adaptation or selection for saline resistant microorganisms occurred, which could be concluded from the observed increase in the 50% activity inhibitory concentrations of sodium during continuous flow experiments. Changes in Na(+) susceptibility in time are likely to be expected when treating saline wastewaters. The latter was evidenced by the high sodium tolerance of granular methanogenic sludge coming from a full-scale industrial reactor treating such wastewater. High salinity conditions resulted in a reduced granule strength, predicting process instabilities during long term reactor operation. Batch tests showed that high sodium concentrations seemed to displace the calcium from the granular sludge, a factor known to affect anaerobic granules formation.  相似文献   

2.
The influence of settling time on the formation of aerobic granules.   总被引:17,自引:0,他引:17  
Aerobic granular sludge, without the addition of carrier material, has only been reported in one suspended growth system, the Sequencing Batch Reactor (SBR) operated with short fill and settling periods. Recent studies have demonstrated that extracellular polysaccharides increased with the formation of aerobic granules, and that the shear force may stimulate production of these polysaccharides. In the study described herein, two SBRs were operated with the same shear force (air flow rate 275 L h(-1)) and two different settling times (2 and 10 min). Only the reactor with 2 min settling formed completely granular sludge, although granules were present in both reactors. Community analysis using 16S rRNA PCR products and DGGE showed that the communities diverged quickly after reactor start-up. For samples taken at steady-state, the granular population was more stable and less diverse than the flocculent reactor. EPS extraction of samples using cation exchange resin yielded similar values for aerobic granular sludge and previously reported anaerobic granules. While differences in the protein and TOC content between the flocculent and granular reactors increased appreciably as the sludge became more granular, the protein to polysaccharide ratio was relatively constant. The experiment confirmed previous theories that short settling times in SBRs select for granular sludge. The settling time results in granular sludge having a higher EPS protein content and a less diverse but more stable population.  相似文献   

3.
Anaerobic Ammonium Oxidation (ANAMMOX) is a novel biological nitrogen removal process, which is regarded as the most economical process at present. In this paper, two lab-scale UASB reactors, one of which was inoculated with the mixture of anaerobic sludge and aerobic sludge, the other with river sediments, were started up, using the inorganic synthetic water containing ammonium and nitrite as influent. After 421 days' and 356 days operation respectively, the ammonium removal efficiencies in two reactors reached 94% and 86% respectively, the total nitrogen volumetric loading rates were 2.5 and 1.6 kgN/m3 x d. ANAMMOX granules were obtained in both reactors; the color of most granules was brown, but some of them were red. Based on the observation and studies on the microstructure of the granules, three kinds of ANAMMOX granular sludge formation mechanisms were proposed: adhering biofilm and disintegrated granular core mechanism, adhering biofilm and inorganic core mechanism and the self-coherence mechanism. For phylogenetic characterization of anaerobic ammonium oxidizers, 16S rDNA approach was performed using Planctomycetales-specific PCR amplification. The dominant anammox bacteria occupied more than 90% of Planctomycetales-specific bacteria, and 27% of all bacteria in reactors. The dominant anammox bacteria distantly related to all currently reported candidate anammox genera. Functional gene of amoA was analyzed to investigate the 'aerobic' ammonium-oxidizing bacteria in beta-Proteobacteria. The 'aerobic' ammonium-oxidizing bacteria were more diverse than anammox bacteria, but most of them clustered in anoxic ammonium-oxidizing Nitrosomonas eutropha/europaea groups. The composition of 'aerobic' ammonium-oxidizing bacteria is only 2% of all of bacteria in reactors.  相似文献   

4.
EGSB反应器的启动运行研究   总被引:16,自引:0,他引:16  
采用两个小试规模的EGSB(ExpandedGranularSludgeBed)反应器 ,分别接种厌氧絮状污泥和颗粒污泥来研究其启动规律。试验结果表明 ,接种厌氧絮状污泥的R1反应器 ,由于出水循环的采用导致严重的污泥流失 ,首先应按UASB反应器的运行方式培养出颗粒污泥后 ,再按EGSB反应器方式运行 ,共需 78d才能完成启动 ;接种厌氧颗粒污泥的R2反应器 ,采用适宜的回流比有利于细菌的生长和反应器运行效果的改善 ,在经过短暂的无回流驯化后 ,即可按EGSB运行方式启动运行 ,仅需 32d即完成启动。  相似文献   

5.
The rheological behaviour of granular sludges (diameter 20-315 microm) originating from different anaerobic reactors was carried out using rotation tests. The sieved granular sludges suspensions display a non-Newtonian rheological behaviour and the limit viscosity was therefore used as a rheological parameter. The values obtained, which depend on the shear rate used, were strongly influenced by the total suspended solids (TSS) content of granular sludge and an exponential relation was found between the TSS and the rheological parameter limit viscosity. The increase of viscosity as a function of TSS content of the granular sludge as well as the increase of granule size underlines the importance of the interaction between granules in the evolution of this rheological parameter. Significant differences in granular sludge limit viscosity were found for granular sludge of different origins. All measurements performed with 10 g.l(-1) TSS granular sludge indicate the ability of the chosen rheological parameter to describe different granular sludge quality.  相似文献   

6.
A new 16S rRNA-targeted oligonucleotide probe, specific for the cluster of fatty acid beta-oxidizing syntrophic bacteria of the family Syntrophomonadaceae was designed for fluorescence in situ hybridization. This probe was evaluated with target as well as non-target cultures. Moreover this probe was assessed with butyrate and oleate degrading enrichment cultures and methanogenic sludges from full-scale plants. The results showed that the probe revealed the presence of fatty acid beta-oxidizing syntrophic bacteria in some of the samples analyzed. However, cell quantification was possible only in enrichment cultures and in a flocculent sludge from a reactor that treats lipid-rich wastewaters, but not in methanogenic granular sludges from upflow anaerobic sludge blanket reactors.  相似文献   

7.
The production of small amounts of well-stabilized biological sludge is one of the main advantages of upflow anaerobic sludge bed (UASB) reactors over aerobic wastewater treatment systems. In this work, sludge produced in three pilot-scale UASB reactors used to treat sewage under subtropical conditions was assessed for both stability and specific methanogenic activity. Stability of primary sludge from settling tanks and digested sludge from conventional sludge digesters was also measured for comparison purposes. Kinetic parameters like the hydrolysis rate constant and the decay rate constant were calculated. High stability was observed in sludge from UASB reactors. Methanogenic activity in anaerobic sludges was relatively low, probably due to the low organic matter concentration in influent sewage. Knowledge on sludge growth rate, stability, and activity might be very useful to optimize sludge management activities in full-scale UASB reactors.  相似文献   

8.
Homoacetogenic bacteria are strict anaerobes capable of autotrophic growth on H(2)/CO(2) or CO, and of heterotrophic growth on a wide range of sugars, alcohols, methoxylated aromatic compounds and one carbon compounds, yielding acetate as their sole metabolic end-product. Batch activity tests on anaerobic granular sludge, using H(2)/CO(2) as a substrate and 2-bromoethanesulfonate (BES) as a specific methanogenic inhibitor revealed that H(2)/CO(2) conversion and concomitant acetate production commenced only after a lag period of 60-100 h. This finding suggests that the homoacetogenic population of digester sludge could be maintained by heterotrophic growth on sugars or other organic compounds, rather than by autotrophic growth on H(2)/CO(2). In the present study, two upflow anaerobic sludge bed (UASB) reactors were operated at 37 degrees C and 55 degrees C for two distinct trial periods, each characterised by the application of influents designed to enrich for homoacetogenic bacteria. Specific primers designed for the amplification of the functional gene encoding formyltetrahydrofolate synthetase (FTHFS), a key enzyme in the acetyl-CoA pathway of acetogenesis, were used as a specific probe for acetogenic bacteria. The diversity of acetogens in the granular sludge cultivated in each reactor was revealed by application of FTHFS targeted PCR. Results show that biomass acetogenic composition was dependent upon the operational temperature of the reactor and the substrate supplied as influent.  相似文献   

9.
Conventional anaerobic digestion is a widely applied technology to produce biogas from organic wastes and residues. The biogas calorific value depends on the CH, content which generally ranges between 55 and 65%. Biogas upgrading to so-called 'green gas', with natural gas quality, generally proceeds with add-on technologies, applicable only for biogas flows > 100 m3/h. In the concept of autogenerative high pressure digestion (AHPD), methanogenic biomass builds up pressure inside the reactor. Since CO2 has a higher solubility than CH4, it will proportion more to the liquid phase at higher pressures. Therefore, AHPD biogas is characterised by a high CH4 content, reaching equilibrium values between 90 and 95% at a pressure of 3-90 bar. In addition, also H2S and NH3 are theoretically more soluble in the bulk liquid than CO2. Moreover, the water content of the already compressed biogas is calculated to have a dew point <--10 degrees C. Ideally, high-quality biogas can be directly used for electricity and heat generation, or injected in a local natural gas distribution net. In the present study, using sodium acetate as substrate and anaerobic granular sludge as inoculum, batch-fed reactors showed a pressure increase up to 90 bars, the maximum allowable value for our used reactors. However, the specific methanogenic activity (SMA) of the sludge decreased on average by 30% compared to digestion at ambient pressure (1 bar). Other results show no effect of pressure exposure on the SMA assessed under atmospheric conditions. These first results show that the proposed AHPD process is a highly promising technology for anaerobic digestion and biogas upgrading in a single step reactor system.  相似文献   

10.
An upflow anaerobic reactor operated with a sequencing batch mode to enhance high rate digestion of raw and thermally disintegrated waste activated sludge with formation of granules. The gas production rate doubled when disintegrated waste activated sludge was introduced. Gradual granulation took place and the dispersed particles become coarse granulation as the operation continued. The granular sludge showed relatively higher specific methanogenic activity than the dispersed sludge. Bacterial morphology by a scanning electron microscope showed diversity of bacteria such as filamentous, rod and spherical shape in the section of granules. Filamentous bacteria, which might support the frame of a granule, were observed as long chains at the outer surface. Meanwhile, rod and spherical bacteria, which might play a role in the initial stage of granule formation, were observed from the inner surface of the granule. High rate digestion of sludge along with efficient liquid-solids separation was achieved due mainly to development of sludge granules within the upflow reactor.  相似文献   

11.
Physical, chemical and biological characteristics were investigated for aerobic granules and sludge flocs from three laboratory-scale sequencing batch reactors (SBRs). One reactor was operated as normal SBR (N-SBR) and two reactors were operated as granular SBRs (G-SBR1 and G-SBR2). G-SBR1 was inoculated with activated sludge and G-SBR2 with granules from the municipal wastewater plant in Garching (Germany). The following major parameters and functions were measured and compared between the three reactors: morphology, settling velocity, specific gravity (SG), sludge volume index (SVI), specific oxygen uptake rate (SOUR), distribution of the volume fraction of extracellular polymeric substances (EPS) and bacteria, organic carbon and nitrogen removal. Compared with sludge flocs, granular sludge had excellent settling properties, good solid-liquid separation, high biomass concentration, simultaneous nitrification and denitrification. Aerobic granular sludge does not have a higher microbial activity and there are some problems including higher effluent suspended solids, lower ratio of VSS/SS and no nitrification at the beginning of cultivation. Measurement with CLSM and additional image analysis showed that EPS glycoconjugates build one main fraction inside the granules. The aerobic granules from G-SBR1 prove to be heavier, smaller and have a higher microbial activity compared with G-SBR2. Furthermore, the granules were more compact, with lower SVI and less filamentous bacteria.  相似文献   

12.
Aerobic granular sludge has a number of advantages over conventional activated sludge flocs, such as cohesive and strong matrix, fast settling characteristic, high biomass retention and ability to withstand high organic loadings, all aspects leading towards a compact reactor system. Still there are very few studies on the strength of aerobic granules. A procedure that has been used previously for anaerobic granular sludge strength analysis was adapted and used in this study. A new coefficient was introduced, called a stability coefficient (S), to quantify the strength of the aerobic granules. Indicators were also developed based on the strength analysis results, in order to categorize aerobic granules into three levels of strength, i.e. very strong (very stable), strong (stable) and not strong (not stable). The results indicated that aerobic granules grown on acetate were stronger (high density: >150 g T SSL(-1) and low S value: 5%) than granules developed on sewage as influent. A lower value of S indicates a higher stability of the granules.  相似文献   

13.
This research integrates two different concepts of anaerobic biotechnology- two-phase anaerobic treatment and anaerobic granular sludge bed technology, in treatment of colored wastewaters from textile industries. Four anaerobic reactors based on upflow anaerobic sludge blanket (UASB) technology were used as acid reactors and an expanded granular sludge bed (EGSB) reactor was used as a methane reactor. A conventional single-phase anaerobic reactor, working on EGSB technology was run in parallel to compare the performances of the two systems. Reactors were operated at different hydraulic retention times. The results from the study, which span over a period of 400 days, indicated that the two-phase system produces a higher quality of effluent in terms of color, COD and suspended solids than single-phase anaerobic treatment when operated under similar conditions. Alkalinity requirement of two-phase system was also observed to be lower than that of single-phase system which is important regarding design consideration.  相似文献   

14.
Radiotracer incubation experiments and beta microimaging, along with fluorescent in situ hybridisation (FISH), are proposed as a complementary approach to specific methanogenic activity testing and measurement of in vitro substrate utilisation rates to understand better the ecophysiology of anaerobic granular biofilms from wastewater treatment reactors.  相似文献   

15.
Dark fermentation shares many features with anaerobic digestion with the exception that to maximize hydrogen production, methanogens and hydrogen-consuming bacteria should be inhibited. Heat treatment is widely applied as an inoculum pre-treatment due to its effectiveness in inhibiting methanogenic microflora but it may not exclusively select for hydrogen-producing bacteria. This work evaluated the effects of heat treatment on microbial viability and structure of anaerobic granular sludge. Heat treatment was carried out on granular sludge at 100 °C with four residence times (0.5, 1, 2 and 4 h). Hydrogen production of treated sludges was studied from glucose by means of batch test at different pH values. Results indicated that each heat treatment strongly influenced the granular sludge resulting in microbial communities having different hydrogen productions. The highest hydrogen yields (2.14 moles of hydrogen per mole of glucose) were obtained at pH 5.5 using the sludge treated for 4 h characterized by the lowest CFU concentration (2.3 × 10(3)CFU/g sludge). This study demonstrated that heat treatment should be carefully defined according to the structure of the sludge microbial community, allowing the selection of highly efficient hydrogen-producing microbes.  相似文献   

16.
Factors affecting cultivation of extremely slow-growing bacteria (anaerobic ammonium oxidiser, doubling time 11 days) were investigated by using upflow anaerobic sludge blanket (UASB) reactors which can maintain high solid retention time. The effects of concentrations of DO, free ammonia (FA), and nitrite on activation of anammox activity were tested during the start-up period. The reactor was inoculated with granular sludge collected from a full-scale UASB reactor used for treating brewery wastewater, and sludge from a piggery wastewater treatment plant and rotating biological contactor treating sewage. Results of continuous operation showed that concentrations of DO, free ammonia (FA) and nitrite in the reactors played a key role in stimulating the anammox activity during start-up period. It is crucial to keep DO below 0.2 ppm, FA below 2 mg/L and nitrite nitrogen below 35 mg/L to cultivate anammox cells in the continuous bioreactor. When the levels of DO, FA and nitrite in the influent were controlled at less than the inhibition levels, the anammox activity increased gradually in the anaerobic condition. Addition of hydrogen sulphide into the reactor enhanced anammox activity in the continuous culture. Through the SEM, TEM and FISH analysis, anammox bacteria were detected in the granular sludge after 3 months of continuous operation.  相似文献   

17.
A dry, batch anaerobic digestion (DBAD) process was tested on two sewage sludge types with different methanogenic seed fractions under laboratory conditions. The aim was to indicate optimal sludge:seed mixing ratios and analyse process performance based on degradation rate and reactor-specific methane production. The attained results were compared with the performance of a liquid-state, laboratory-scale stirred reactor (SR). A mixing ratio of at least 1:1.25 (sludge:seed) yielded processes free from significant inhibitions. Further seeding increments resulted in slightly better performances, but much lower sludge fractions treated in the reactors. Compared with the SR process, the DBAD reactors produced comparable degradation rates albeit in a significantly longer process and with somewhat lower reactor-specific methane production rates. These findings indicate that the DBAD method may provide a viable alternative to liquid-state processes if sludge drying is already applied and reactor volume requirements are of importance.  相似文献   

18.
The biodegradation of 2,4,6-trichlorophenol (246TCP) was studied using expanded granular sludge bed (EGSB) reactors and a fluidized bed biofilm reactor (FBBR) filled with activated carbon. One of the EGSB reactor and the FBBR were bioaugmented with Desulfitobacterium strains. 246TCP loading rate was gradually incremented from 10 to 250 mg L(-1) day(-1). The main pathway of dechlorination was in ortho-position, generating 4-chlorophenol and 2,4-dichlorophenol. The maintenance of both COD degradation efficiency (higher than 80%) and methanogenic efficiency (between 0.3 and 0.6 g CH4-COD g(-1) COD consumed) in EGSB reactor implies a great stability of the process. Through isotherm studies in FBBR, it could be deduced that around 52% of 246TCP was completely dechlorinated, whereas the adsorption involved around 16%. By means of FISH studies it was proved that the methanogenic Archaea community was maintained in the bioaugmented EGSB reactor, whereas in the FBBR this community was gradually developed until reaching stability. Desulfitobacterium community was also maintained in the reactors, although D. chlororespirans proportion rise in the FBBR at the higher 246TCP loading rates, implying that this species can withstand the 246TCP toxicity better than D. hafniense.  相似文献   

19.
Thirteen anaerobic hybrid expanded granular sludge bed-anaerobic filter bioreactors were used for psychrophilic (15-18 degrees C) anaerobic digestion of a variety of synthetic and non-synthetic wastewaters, including: food-processing, dairy, aromatic- and aliphatic-containing and brewery discharges. Specific methanogenic activity assays were employed to assess temporal physiological activity dynamics. Terminal restriction fragment length polymorphism genetic fingerprinting and fluorescent in situ hybridization were used to monitor shifts in the structure of the microbial communities in the bioreactors in response to operating conditions. Treatment efficiencies obtained were comparable to previous mesophilic (37 degrees C) trials. Methanogenic activity developed under psychrophilic conditions and putative psychrophilic populations were detected within otherwise psychrotolerant mesophilic communities. Shifts in the population structure of archaeal (methanogenic) communities were more indicative of process disruption than bacterial communities. Biomolecular techniques were demonstrated as valuable tools for anaerobic wastewater treatment plant monitoring.  相似文献   

20.
Upflow anaerobic sludge blanket reactors may offer a number of advantages over conventional mixed-tank, SBR, and biofilm reactors, including high space-loading, low footprint, and resistance to shocks and toxins. In this study, we assessed the use of upflow anaerobic sludge blanket (UASB) reactor technology as applied to anaerobic ammonia removal, or Anammox. Four 200 ml UASB reactors were inoculated with 50% (by volume) anaerobic granular sludge and 50% flocular sludge from different sources (all with the potential for containing Anammox organisms). Tools used to assess the reactors included basic analyses, fluorescent in-situ hybridisation, and mathematical modelling, with statistical non-linear parameter estimation. Two of the reactors showed statistically identical Anammox activity (i.e., identical kinetic parameters), with good ammonia and nitrite removal (0.14 kgNHx m(-3) reactor day(-1), with 99% ammonia removal). The third reactor also demonstrated significant Anammox activity, but with poor identifiability of parameters. The fourth reactor had no statistical Anammox activity. Modelling indicated that poor identifiability and performance in the third and fourth reactors were related to an excess of reduced carbon, probably originating in the inoculum. Accumulation of Anammox organisms was confirmed both by a volume loading much lower than the growth rate, and response to a probe specific for organisms previously reported to mediate Anammox processes. Overall, the UASB reactors were effective as Anammox systems, and identifiability of the systems was good, and repeatable (even compared to a previous study in a rotating biological contactor). This indicates that operation, design, and analysis of Anammox UASB reactors specifically, and Anammox systems in general, are reliable and portable, and that UASB systems are an appropriate technology for this process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号