首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The complex [UO2(OH)(CO(NH2)2)3]2(ClO4)2 (I) was synthesized. A single crystal X-ray diffraction study showed that compound I crystallizes in the triclinic system with the unit cell parameters a = 7.1410(2), b = 10.1097(2), c = 11.0240(4) Å, α = 104.648(1)°, β = 103.088(1)°, γ = 108.549(1)°, space group \(P\bar 1\), Z = 1, R = 0.0193. The uranium-containing structural units of the crystals are binuclear groups [UO2(OH)· (CO(NH2)2)3] 2 2+ belonging to crystal-chemical group AM2M 3 1 [A = UO 2 2+ , M2 = OH?, M1 = CO(NH2)2] of uranyl complexes. The crystal-chemical analysis of nonvalent interactions using the method of molecular Voronoi-Dirichlet polyhedra was performed, and the IR spectra of crystals of I were analyzed.  相似文献   

2.
The effect of the synthesis conditions on the properties of inorganic laser-active liquids POCl3-SbCl5-235UO 2 2+ -Nd3+ is considered. The kinetic dependences of the U(IV) content and decay time of the Nd3+ luminescence in POCl3-SbCl5-235UO 2 2+ -Nd3+ solutions for various synthesis procedures at 380 K have been obtained. In POCl3-SbCl5-235UO 2 2+ -Nd3+ solutions, nonradiative energy transfer Nd3+ → U4+ is observed, and quenching of the Nd3+ luminescence is described by the Stern-Volmer law: k q = (6.4 ± 0.6) × 105 l mol?1 s?1. Laser liquids POCl3-SbCl5-235UO 2 2+ -Nd3+ with neodymium concentration of up to 0.7 M, uranyl concentration of up to 0.1 M, and decay time of the Nd3+ luminescence of up to 220 μs have been prepared for the first time.  相似文献   

3.
Interaction of aqueous UO 2 2+ solutions with modified sorbents based on coarsely porous silica gel MSKG, containing Cu, Ni, and Zn ions, was studied. Uranyl ions are sorbed on all the sorbents. The decontamination factors of 10?2 M aqueous UO 2 2+ solutions on straight MSKG and on MSKG modified with Cu, Ni, and Zn are of the same order of magnitude and do not exceed 100. In the case of 1.1 × 10?1 M UO 2 2+ solutions, the decontamination factors on straight MSKG and on MSKG modified with Cu, Ni, and Zn are also of the same order of magnitude but do not exceed 10. Interaction of the modified Ni-containing sorbent with a UO 2 2+ solution results in formation of a swamp-green precipitate of the composition NiU(OH)6·4N2H5OH, i.e., UO 2 2+ is reduced to U4+.  相似文献   

4.
The spectral-luminescence properties of uranyl in aprotic binary solvent POCl3-SnCl4 were studied. The uranyl luminescence lifetime τ in the POCl3-SnCl4-235UO 2 2+ system does not exceed 20 μs. There is no concentration quenching of uranyl up to [UO 2 2+ ] = 0.14 M. When anhydrous UO3 is dissolved, τ increases with increasing water content of the initial solvent,. In the solutions containing uranyl perchlorate, τ decreases with increasing uranyl and SnCl4 concentrations. This effect is caused by products of ClO 4 ? decomposition scavenged by SnCl4.  相似文献   

5.
Stable BiCl3-containing solutions of phosphorus oxychloride, activated with UO 2 2+ and Nd3+ ions, can be prepared only in the presence of another Lewis acid MCl x . The electronic absorption spectra of the liquids prepared and the decay times of the Nd3+ luminescence are characteristic of individual solutions based on POCl3-MCl x . The radiation-chemical yield of Nd3+ in the excited state 4 F 3/2 in POCl3-BiCl3-MCl x -235UO 2 2+ -Nd3+ solutions upon homogeneous excitation with uranium α-particles is lower than in POCl3-MCl x -235UO 2 2+ -Nd3+ solutions at comparable component concentrations. Apparently, Bi3+ in solutions based on the POCl3-BiCl3-MCl x system is not incorporated in neodymium- and/or uranyl-containing complexes and remains in the matrix.  相似文献   

6.
The compound (NH4)3[UO2(CH3COO)3]2(NCS) (I) was synthesized and examined by single crystal X-ray diffraction analysis. The compound crystallizes in the rhombic system with the unit cell parameters a = 11.5546(4), b = 18.5548(7), c = 6.7222(3) Å, V = 1441.19(10) Å3, space group P21212, Z = 2, R = 0.0345. The uranium-containing structural units of crystals of I are isolated mononuclear groups [UO2(CH3COO)3]? belonging to crystal-chemical group AB 3 01 (A = UO 2 2+ , B01 = CH3COO?) of uranyl complexes. The specific features of packing of the uranium-containing complexes in the crystal structure are considered.  相似文献   

7.
This paper describes the structural, magnetic, and dielectric properties of Gd3+ substituted cobalt–copper ferrite. The influence of Gd3+ substitution on the structural, magnetic and electrical properties of cobalt–copper ferrite was investigated through various characterization techniques. Thermal analysis was carried out on the prepared gel to know the combustion and calcination temperature. The detailed structural analysis suggests that the substitution of a Fe3+ ion with a Gd3+ ion at B site results in lattice distortion, modification in crystallite size and grain size of the material. X-ray photoelectron spectroscopy confirmed the oxidation states of the elements present. Magnetic measurement performed at 300 and 50 K depicts the decrease in saturation magnetization (Ms) and increase in coercivity (Hc) with Gd3+ substitution in the cobalt–copper spinel ferrite. The dielectric measurements acquired over a wide range of frequencies and temperature showed an increase in dielectric constant with increasing Gd3+ concentration.  相似文献   

8.
The ceramic technology is employed for synthesizing manganites of composition Nd Mg 3 I Mg3Mn4O12(MeI-Li, Na, K). The X-ray technique is used to find that the compounds crystallize in tetragonal syngony. The parameters of their crystal lattices are determined. Their heat capacities are experimentally determined in the range from 298.15 to 673 K, which enables one to reveal second-order phase transitions. In view of these transitions, equations describing the C p ° f(T) dependence are derived, and the thermodynamic functions C p ° (T), H°(T)-H°(298.15), S°(T), and Φ xx (T) are calculated.  相似文献   

9.
Oxidation of Np(V) to Np(VI) with xenon trioxide in a 0.5–1.4 M HClO4 solution was studied by spectrophotometry. The reaction rate is described by the equation–d[Np(V)]/dt = k[Np(V)][XeO3], where k = 4.6 × 10–3 L mol–1 s–1 in 1 M HClO4 at 92°С. The activation energy is close to 92 kJ mol–1. The activated complex is formed in contact of NpO 2 + and ХеО3 without participation of Н+ ions. The activated complex transforms into NpO 2 2+ and the products: ОН, Хе, and О2. The ОН radical oxidizes Np(V). Admixtures of Со2+ and especially Fe3+ accelerate the Np(V) oxidation.  相似文献   

10.
Features of the behavior of uranyl ions in POC13-MCl x -235UO 2+ 2 solutions (M = Ti, Si, Zr, Sn, Sb) were considered. Irreversible accumulation of U(IV) in the course of synthesis of POCl3-SnCl4-235UO 2+ 2 solutions prepared from water-containing U(VI) compounds, excluding UO2(ClO4)2 · 5H2O, was found. The reaction rate increases with increasing uranyl concentration, k l[U(IV)] ~ (1.6±0.2) × 10?6 s?1 (T = 380 K). The U(IV) accumulation was also observed on heating (T = 360–380 K) POCl3-SnCl4-235UO 2+ 2 and POCl3-SbCl5-235UO 2+ 2 solutions hermetically sealed in glass cells and on irradiating them by the light of a xenon lamp. In POCl3-SbCl5-235UO 2+ 2 solutions prepared from UO2(C1O4)2 · 5H2O, U(IV) disappears within several days after stopping the irradiation. The reduction of U(VI) is caused by formation of uranyl dichlorophosphate complexes and by deactivation of uranyl excitation with chlorine-containing agents.  相似文献   

11.
X-ray diffraction data are presented for combustion products in the Al-W-N system. New, nonequilibrium intermetallic compounds have been identified, their diffraction patterns have been indexed, and their unit-cell parameters have been determined. The phases α-and β-WAl4 are shown to exist in three isomorphous forms, differing in unit-cell centering. The phases α′-, α″-, and α?-WAl4 are monoclinic, with a 0 = 5.272 Å, b 0 = 17.770 Å, c 0 = 5.218 Å, β = 100.10°; point groups C12/c1, A12/n1, I12/a1, respectively. The phases β′-, β″-, and β?-WAl4 are monoclinic, with a 0 = 5.465 Å, b 0 = 12.814 Å, c 0 = 5.428 Å, β = 105.92°; point groups A112/m, B112/m, I112/m, respectively. The compounds WAl2 and W3Al7, identified each in two isomorphous forms, differ in cell metrics (doubling) but possess the same point group: P222. WAl 2 : orthorhombic, a 0 = 5.793 Å, b 0 = 3.740 Å, c 0 = 6.852 Å. WAl 2 : orthorhombic, a 0 = 11.586 Å, b 0 = 3.740 Å, c 0 = 6.852 Å. W3Al 7 : orthorhombic, Pmm2, a 0 = 6.225 Å, b 0 = 4.806 Å, c 0 = 4.437 Å. W3Al 7 : orthorhombic, Pmm2, a 0 = 12.500 Å, b 0 = 4.806 Å, c 0 = 8.874 Å. The new phase WAl3: triclinic, P1, a 0 = 8.642 Å, b 0 = 10.872 Å, c 0 = 5.478 Å, α = 104.02°, β = 64.90°, γ = 107.15°.  相似文献   

12.
Multiferroic properties of La-modified four-layered perovskite Bi5?x La x Fe0.5Co0.5Ti3O15 (0 ≤ x ≤ 1) ceramics were investigated, by analyzing the magnetodielectric effect, magneto-polarization response and magnetoelectric conversion. X-ray diffraction indicated the formation of pure Aurivillius ceramics, and Raman spectroscopy revealed the Bi ions displacement and the crystal structure variation. The enhancement of ferromagnetic and ferroelectric properties was observed in Bi5?x La x Fe0.5Co0.5Ti3O15 after La modification. The evidence for enhanced ME coupling was determined by magnetic field-induced marked variations in the dielectric constant and polarization. A maximum ME coefficient of 1.15 mV/cm·Oe was achieved in Bi4.25La0.75Fe0.5Co0.5Ti3O15 ceramic, which provides the possible promise for novel magnetoelectric device application.  相似文献   

13.
The scaling behavior of dynamic hysteresis was investigated in Bi3.15Nd0.85Ti3O12 bulk ceramics at a frequency of 1–1000 Hz and an external electric field amplitude of 79–221 kV/cm. The scaling behavior at low amplitude (E 0 ≤ 114 kV/cm) takes the form of \(\langle A \rangle \propto f^{ - 0.013} E_{0}^{0.7}\) for low frequency (f ≤ 200 Hz) and \(\langle A \rangle \propto f^{ - 0.013} E_{0}^{0.22}\) for high frequency (f > 200 Hz), where \(\langle A \rangle\) is the area of hysteresis loop and f and E 0 are frequency and amplitude of external electric field, respectively. At high amplitude (E 0 > 114 kV/cm), we obtain \(\langle A \rangle \propto f^{0.011} E_{0}^{1.163}\) at low frequency and \(\langle A \rangle \propto f^{ - 0.015} E_{0}^{0.7}\) at high frequency. At low E 0, the contribution to the scaling relation mainly results from reversible domain switching, while at high E 0 reversible and irreversible domain switching concurrently contribute to the scaling relation.  相似文献   

14.
Bi2–хLaхFe4O9 and Bi2Fe4–2xTixCoxO9 ferrites have been prepared by solid-state reactions at a temperature of 1073 K. X-ray diffraction data indicate that, in the Bi2–хLaхFe4O9 system, the limiting degree of La3+ substitution for Bi3+ ions in Bi2Fe4O9 does not exceed 0.05 and that the limiting degree of substitution in the Bi2Fe4–2xTixCoxO9 system lies in the range 0.05 < x < 0.1. The specific magnetization and specific magnetic susceptibility of the samples have been measured at temperatures from 5 to 300 K in a magnetic field of 0.86 T. The field dependences of magnetization obtained for the Bi2–хLaхFe4O9 and Bi2Fe4–2xTixCoxO9 ferrites at temperatures of 300 and 5 K demonstrate that partial isovalent substitution of La3+ for Bi3+ ions in Bi2Fe4O9 and heterovalent substitution of Ti4+ and Co2+ ions for two Fe3+ ions leads to partial breakdown of the antiferromagnetic state and nucleation of a ferromagnetic state.  相似文献   

15.
Ni0.4Co0.6Fe2O4 nanopowders were prepared via the co-precipitation route followed by annealing treatment. The structural and magnetic properties of the as-synthesized samples were determined by XRD, FT-IR, TG-DSC, and PPMS measurements, respectively. The XRD patterns indicated a single-phase cubic spinel structure for all the Ni-Co ferrite samples, regardless of adding sequences of the reactants or NaOH concentration. The analysis of the XRD patterns revealed that the enhancement in lattice constant with increasing NaOH concentration is related to the prevention of oxidization of Co2+ ions in the Ni-Co ferrite lattice. The FT-IR spectra indicated that samples prepared in the B process have fewer impurities than those prepared in the A process. The enhancement in saturation magnetization with the increase in sodium hydroxide concentration could be attributed to the strengthening of super-exchange interaction between A and B sublattices, due to replacements of Co3+ ions (magnetic moment of 0 μ B) by Co2+ ions (magnetic moment of 3 μ B) at B sublattices. The obvious increase in the coercivity field with the increase in concentration of NaOH solutions can be interpreted in terms of enhancement of magneto-crystalline anisotropy that originated from gradual substitutions of Co3+ ions with Co2+ ions at the octahedral sites.  相似文献   

16.
BiY2Cr x Fe5?x O12 (x = 0, 0.05, 0.1, 0.2, 0.3) nanocrystals were synthesized by using a sol-gel method. Samples were characterized by the powder X-ray diffraction (XRD), the thermal gravity analysis (TGA) and the differential thermal analysis (DTA), the vibrating sample magnetometer(VSM) and Mössbauer spectrums. The average sizes of the particles were determined by the Scherrer’s formula. The special Ms and Mössbauer spectra of BiY2Cr x Fe5?x O12 nanocrystals are researched at room temperature. It is seen that the special Mss of samples are initially increased with increasing Cr3+ content (x < 0.1), and decreased with increasing content of Cr3+ ions (x > 0.1).  相似文献   

17.
This paper studies the microwave dielectric properties, microstructure, vibration and densification of Li2ZnTi3+xO8+2x (\(- 0.04 \le {\text{x}} \le +0.06\)) ceramics, manufactured via a conventional mixed oxide route. The X-ray diffraction and Raman spectroscopy revealed the unit cell parameter and cation ordering in LZT non-stoichiometry in their vibrational modes. The densification and phase composition were characterized by the EDX and SEM methods. It was found that a slight Ti vacancy can improve the relative density to the maximum value (96.2%). The XRD results showed that the second phase of TiO2 in the Li2ZnTi3.06O8.12 composition is formed. The sintered samples were detected in the microwave frequency range by using the resonance technique. The \({\text{~}}{\tau _f}\) values of the ceramics within Ti excess adjusted to near zero. The Li2ZnTi2.96O7.92 ceramic showed the best relative density, single phase and best microwave dielectric \({\varepsilon _r}~={\text{ }}25.98\), Q?×?f?=?61,000 GHz, \({\tau _f}={\text{ }} - 17.4{\text{ ppm/}}^\circ {\text{C}}\) sintered at 1100 °C for 4 h.  相似文献   

18.
The crystal structure of a previously unknown compound KNa3[(UO2)5O6(SO4)] [space group Pbca, a = 13.2855(15), b = 13.7258(18), c = 19.712(2) Å, V = 3594.6(7) Å3] was solved by direct methods and refined to R 1 = 0.055 for 3022 reflections with |F hkl | ≥ 4σ |F hkl |. In the structure there are five sym-metrically nonequivalent uranyl cations. They are linked by cationcation (CC) interactions to form a pentamer whose central cation is U(2)O 2 2+ forming two three-centered CC bonds. All the uranyl ions are coordinated in the equatorial plane by five O atoms, which leads to the formation of pentagonal bipyramids sharing common edges to form layers parallel to the (100) plane. The sulfate tetrahedron links the uranyl layers into a 3D framework. The K+ and Na+ cations are arranged in framework voids. A brief review of CC interactions in U(VI) compounds is presented.  相似文献   

19.
Tc(IV) is oxidized with persulfate ions in HClO4 solution by reactions with both S2O 8 2− ion and product of its thermal decomposition, Caro acid, H2SO5. The reaction rate at 35°C and solution ionic strength μ = 1 is described by the equation d[Tc(IV)]/dt = k 1[Tc(IV)][S2O 8 2− ] + k 3[Tc(IV)][HSO 5 ]/[H+], where k 1 = 0.88±0.04 l mol−1 min−1 and k 3 = 110±5 min−1. With increasing ionic strength to μ = 2, both rate constants decrease (k 1 = 0.58±0.08 l mol−1 min−1 and k 3 = 52±2 min−1 at 35°C). The activation energy of the overall reaction is 77.7±8.1 kJ mol−1. The mechanisms of both reactions are discussed. __________ Translated from Radiokhimiya, Vol. 47, No. 2, 2005, pp. 145–149. Original Russian Text Copyright ? 2005 by V. Koltunov, Gomonova, G. Koltunov.  相似文献   

20.
In this research work, magnetic and microwave absorption loss and other response characteristics in cobalt zinc ferrite composite has been studied. Cobalt zinc ferrite with the composition of Co0.5Zn0.5Fe2O4 was prepared via high energy ball milling followed by sintering. Phase characteristics of the as-prepared sample by using XRD analysis shows evidently that a high crystalline ferrite has been formed with the assists of thermal energy by sintering at 1250 °C which subsequently changes the magnetic properties of the ferrite. A high magnetic permeability and losses was obtained from ferrite with zinc content. Zn substitution into cobalt ferrite has altered the cation distribution between A and B sites in spinel ferrite which contributed to higher magnetic properties. Specifically, Co0.5Zn0.5Fe2O4 provides electromagnetic wave absorption characteristics. It was found that cobalt zinc ferrite sample is highly potential for microwave absorber which showed the highest reflection loss (RL) value of ??24.5 dB at 8.6 GHz. This material can potentially minimize EMI interferences in the measured frequency range, and was therefore used as fillers in the prepared composite that is applied for microwave absorbing material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号