首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以滑石粉为填料通过挤出机熔融共混制备聚丙烯(PP)/滑石粉复合材料,考察了硅烷偶联剂对滑石粉表面改性前后及添加不同含量的乙烯-辛烯共聚物(POE)对共混物力学性能、流变性能和微观形态的影响。结果表明,滑石粉表面改性后可以明显提高PP的缺口冲击强度,当PP/滑石粉质量比为100/10和100/30时,PP/滑石粉(改性)较PP/滑石粉(未改性)复合材料的缺口冲击强度分别提高37.8 %与36.4 %;表面改性后的滑石粉使复合材料的储能模量降低;POE的加入提高了滑石粉在PP基体中的分散性,随着其含量的增加,复合材料的缺口冲击强度提高,韧性提高。  相似文献   

2.
本文研究了不同型号及含量TPU对POM的性能影响,并研究了活性碳酸钙和低温抗冲击改性剂对POM的增强改性.结果表明:硬度为80A的TPU对POM的增韧效果优于硬度为90A的TPU;且当TPU的添加量为30份时,可使POM/TPU合金的缺口冲击强度最高为186J/m,低温冲击为146J/m;加入活性碳酸钙后不能明显提高合...  相似文献   

3.
采用热塑性聚氨酯弹性体(TPU)和刚性粒子纳米二氧化硅(SiO2)对聚甲醛(POM)进行了协同增韧,并通过差示扫描量热仪和扫描电子显微镜等分析了增韧体系的结构和性能。结果表明,TPU/SiO2协同增韧提高了POM缺口冲击强度,且能有效降低传统增韧方法对材料拉伸强度和弯曲模量造成的损失;当POM中单独加入20 %(质量分数,下同)TPU时,POM的缺口冲击强度提高了89 %,拉伸强度和弯曲模量却分别降低了18 %和40 %;单独加入2 % SiO2时,POM的缺口冲击强度仅提高22 %,增韧效果不明显;同时加入20 %的TPU和2 %的SiO2时,POM的缺口冲击强度提高了230 %,拉伸强度和弯曲模量仅分别下降了8 %和13 %。  相似文献   

4.
研究了热塑性聚氨酯TPU及TPU-g-MAH对废旧ABS增韧效果的影响。结果表明:当TPU的用量为15份时,共混物缺口冲击强度为13.3 KJ/m2,比改性前提高了26.7%,当TPU-g-MAH的用量为20份,DCP用量为0.5份时,共混物缺口冲击强度为20.2 KJ/m2,比改性前提高了92.4%。  相似文献   

5.
采用滑石粉和有机成核剂复配改性抗冲击共聚聚丙烯(PP),研究了改性PP的力学性能、结晶性能和耐热性能。结果表明:滑石粉可以有效提高PP的拉伸屈服应力、弯曲模量、常温简支梁缺口冲击强度和洛氏硬度;滑石粉和质量分数为0.30%的有机成核剂复配,使PP/滑石粉/有机成核剂复合材料的弯曲模量,洛氏硬度,常温、低温简支梁缺口冲击强度分别提高了11.9%,13.5%,156.5%,9.7%,负荷变形温度由PP的68.7℃提高到76.2℃;滑石粉和质量分数为0.30%的有机成核剂复配对PP具有异相成核作用,使PP/滑石粉/有机成核剂复合材料的结晶温度升高,晶粒细化、致密。  相似文献   

6.
采用熔融挤出法制备了废旧聚丙烯/聚烯烃弹性体复合材料(RPP/POE),分析了不同底料来源、不同杂料、填料、加工工艺对POE增韧RPP的缺口冲击强度的影响。结果表明:共聚底料的RPP增韧后,缺口冲击强度明显高于均聚底料的RPP,杂料聚苯乙烯(PS)和丙烯腈-丁二烯-苯乙烯共聚物(ABS)会明显降低RPP/POE复合材料的缺口冲击强度,高密度聚乙烯(HDPE)、低密度聚乙烯(LDPE)、线型低密度聚乙烯(LLDPE)对RPP/POE复合材料的缺口冲击强度影响不大,少量的LLDPE还可以提升RPP/POE复合材料的缺口冲击强度。2%以内的碳酸钙对RPP材料的缺口冲击强度有小幅提升,超过4%后,材料的缺口冲击强度有明显下降。添加滑石粉后,材料的缺口冲击强度明显下降。加工温度和螺杆转速也会影响RPP/POE的缺口冲击强度,最佳加工温度为200~220℃,螺杆转速500 r/min。  相似文献   

7.
通过添加马来酸酐(MAH)、玻纤(GF)、增塑剂(ZRJ-121)等助剂实现聚乳酸(PLA)与聚丁二酸丁二醇酯(PBS)的共混改性,制备了高韧耐热二元PLA/PBS基可降解复合材料,考察了不同改性体系及玻纤含量对PLA/PBS合金增韧耐热性能的影响,结果表明:改性PLA/PBS复合材料具有较高的韧性,C1样品的断裂伸长率及冲击强度可分别达到40.36%和4.4 kJ/m2;MAH改性复合材料体系具有更高的结晶度、抗拉强度及弹性模量,且随着玻纤含量的增加,抗拉强度无明显变化,而弹性模量逐渐上升,断裂伸长率和冲击强度逐渐下降;改性PLA/PBS复合材料的维卡软化点接近120℃,初始降解温度可达247.38℃,显示出优异的耐热性能。总之,MAH改性PLA/PBS复合材料具有优异的增韧耐热性能,该研究拓展了可降解复合材料在眼镜框制造领域的应用。  相似文献   

8.
《塑料》2017,(2)
通过熔融共混法制备出聚甲醛(POM)/热塑性聚氨酯(TPU)复合材料。采用差示扫描量热仪测试(DSC)、脆化温度测试、扫描电子显微镜(SEM)、力学性能测试分析了TPU添加量与POM复合材料结晶度和低温性能的关系。结果表明:随着TPU添加量的增加,POM/TPU的常温和低温韧性增大,当TPU含量为10%时,POM/TPU复合材料脆性温度为-39℃,在-30℃下POM复合材料的缺口冲击强度提高了47%;TPU的加入降低了POM/TPU的结晶度,对POM有良好的低温增韧作用。  相似文献   

9.
雷雁洲 《塑料工业》2022,(2):135-139
采用热塑性聚氨酯(TPU)对聚丙烯(PP)进行增韧改性,选取TPU/PP质量分数比10/90的配方添加聚丙烯接枝马来酸酐(MAH-g-PP)进行增容改性。通过拉伸测试、冲击测试表征力学性能,差示扫描量热仪(DSC)、X射线衍射(WAXD)表征结晶性能,动态流变测试表征TPU和PP的相容性。结果显示,TPU对PP有明显的增韧作用,TPU质量分数25%时,冲击强度达到6 610.9 J/m2,较纯PP提高了1.66倍,MAH-g-PP增容后,TPU/PP复合材料的冲击强度继续提高,MAH-g-PP质量分数0.6%时,冲击强度达到7 693.1 J/m2。TPU和PP共混促进了PP β晶型的形成,使结晶度下降,结晶温度升高,MAH-g-PP增容使TPU/PP复合材料结晶度和结晶温度都提高,2.4%MAH-g-PP增容TPU/PP(10/90)的复合材料结晶温度、结晶度和半结晶时间分别达到123.7℃、38.9%及0.31 min,同时,体系中的β晶型消失。  相似文献   

10.
周吓星  陈礼辉  林巧佳 《塑料工业》2013,41(1):33-36,62
采用化学发泡法,注塑制备了聚丙烯(PP)/竹粉发泡复合材料,研究了滑石粉用量对发泡复合材料力学性能、加工性能和热稳定性能的影响。结果表明:当竹塑质量比为1:2、改性AC发泡剂用量为1%、添加15%滑石粉时,增韧发泡复合材料的综合性能最佳,其比弯曲强度为48.98 MPa、弯曲模量为3 183.31 MPa、比拉伸和比冲击强度分别为26.50 MPa和7.88 kJ/m2,与未增韧复合材料相比,提高了2.9%~9.3%;但是滑石粉的加入会降低材料的加工性能,平衡时间和平衡扭矩增加、MFR下降;而且会降低材料的热稳定性,初始热分解温度降低。  相似文献   

11.
《塑料科技》2016,(1):31-34
通过熔融共混制备了不同滑石粉(经偶联剂KH550表面改性)用量的聚丙烯(PP)/丁苯热塑性弹性体(SBS)/滑石粉复合材料(PP与SBS的配比固定为90/10),同时研究了该复合材料的力学性能和流动性能。结果表明:随着滑石粉用量的增加,PP/SBS/滑石粉复合材料的弹性模量和拉伸强度下降;弯曲性能、冲击性能和熔体流动速率则先提高后降低,且均在滑石粉用量为10份时达到最大值;另外添加了改性滑石粉的PP/SBS/滑石粉复合材料,其拉伸强度、冲击强度和熔体流动速率均高于未改性滑石粉填充的复合材料。  相似文献   

12.
采用熔融共混法制备了聚丁二酸丁二酯(PBS)/木质纤维/滑石粉复合材料,其中PBS的质量分数固定为70%,其它为木质纤维和滑石粉。流变性能测试结果显示,木质纤维含量越高,复合材料的加工扭矩越大,并在木质纤维质量分数为25%时达到最高值。扫描电子显微镜分析结果表明,木质纤维和滑石粉均匀分散在PBS基体中。X射线衍射测试结果可知,木质纤维的加入降低了基体树脂的结晶度,复合材料中滑石粉的层间距变小。差示扫描量热分析结果显示,滑石粉有利于复合材料的冷结晶,PBS/木质纤维/滑石粉复合材料的熔融峰和结晶峰比PBS/木质纤维复合材料和PBS/滑石粉复合材料的尖锐。力学性能测试结果显示,加入木质纤维可以提高复合材料的力学性能,当木质纤维质量分数为25%时,复合材料的力学性能达到最佳,此时复合材料的拉伸强度为11.1 MPa,断裂伸长率和缺口冲击强度达到最大值,分别为93.3%,3.56 kJ/m2。土壤降解数据表明,木质纤维的加入显著提高了复合材料的降解速率,说明合适用量的木质纤维和滑石粉具有协同效应,能使PBS/木质纤维/滑石粉复合材料拥有更好的降解性能。  相似文献   

13.
通过双螺杆挤出机制备了高密度聚乙烯(PE-HD)/石墨/CaCO3增韧母料复合材料,并研究了石墨的表面处理、粒径、含量以及CaCO3增韧母料含量对复合材料导热性能及力学性能的影响。结果表明,偶联剂NDZ201对石墨表面具有较好的处理效果。石墨颗粒直径越小,复合材料的热导率及综合力学性能越高。CaCO3增韧母料能明显提高复合材料的热导率及缺口冲击强度。PE-HD/石墨/增韧母料250B的质量比为45/30/25时,复合材料的热导率可达1.72 W/(m·K),其缺口冲击强度与纯PE-HD相近,拉伸强度和弯曲强度分别比PE-HD提高了52 %和88 %。  相似文献   

14.
无机填料/PVC复合材料的力学性能与加工性能   总被引:3,自引:1,他引:2  
研究4种不同形状的无机填料CaCO3、滑石粉、硅藻土和硫酸镁晶须(MSW)对PVC力学性能和加工性能的影响.SEM观察PVC复合材料的冲击缺口断面微观形貌和无机填料在PVC基体中的分散情况.结果表明:粒状的CaCO3和针状的MSW对PVC复合材料的冲击性能有利,起到增韧作用;而无规的硅藻土对PVC复合材料的冲击性能影响不大;片状的滑石粉反而降低PVC复合材料的冲击强度.  相似文献   

15.
采用双螺杆挤出制备热塑性聚氨酯(TPU)/热塑性淀粉(TPS)复合材料。研究了界面作用对复合材料机械性能的影响;考察了增韧剂种类和含量、淀粉形态和含量对TPU/TPS复合材料机械性能、耐水性能与降解性能的影响;通过红外光谱和扫描电镜对TPU/TPS界面进行了分析。结果表明,聚烯烃弹性体(POE)对TPU/TPS具有良好的增韧效果,对淀粉进行热塑化,可增强淀粉与TPU界面相互作用,从而有效地提高复合材料的机械性能。当TPS用量达到20份,POE用量10份时,TPU/TPS耐折弯次数超过30 000次,其缺口冲击性能、拉伸性能与纯的TPU相当,而其最大吸水率仅为6.2%,7周的生物降解率较TPU提高了6.8倍。  相似文献   

16.
以钛酸钾晶须(PTW)为增强体,采用熔融共混和注射成型法,制备了聚甲醛(POM)/热塑性聚氨酯弹性体(TPU)/PTW复合材料。研究了PTW含量对POM/TPU复合材料力学性能的影响,并借助扫描电子显微镜(SEM)分析了冲击断面形貌。结果表明,TPU的加入有效改善了纯POM的韧性,当TPU含量为10%(质量分数,下同)时,缺口冲击强度是纯POM的2.5倍,但拉伸强度和弯曲强度有所下降;PTW的加入对POM/TPU有较好的增强效果,当PTW含量为15%时,复合材料的拉伸强度、拉伸模量、断裂伸长率、弯曲强度、弯曲模量、缺口冲击强度分别为35.91 MPa、24.17%、144.94MPa、12.26GPa、112.1kJ/m2,拉伸模量、弯曲模量、缺口冲击强度与POM/TPU相比分别提高了14.7%、54.2%和9.2%,综合力学性能达到最佳。  相似文献   

17.
通过熔融共混法制备了一系列不同质量比的PLA/PBS复合材料,研究了不同比例的PBS对PLA的增韧效果,结果发现:加入PBS后,PLA的断裂伸长率和冲击强度都有了明显的提高。PLA与PBS的最佳配比为80/20,断裂伸长率高达428. 04%,冲击强度也由纯PLA的1. 74 k J/m2上升至3. 57 k J/m2。固定PLA/PBS的质量比为80/20,加入不同质量分数的相容剂苯乙烯-甲基丙烯酸缩水甘油酯(ADR)研究ADR对PLA/PBS复合材料增容改性的影响,结果显示:ADR的加入提高了PLA/PBS复合材料的相容性,从而使PLA/PBS复合材料的力学性能也进一步提高。当ADR含量为0. 75%时,其断裂伸长率最大,数值为535. 18%。同时,PLA/PBS复合材料的热稳定性能也更好。  相似文献   

18.
分别考察了三种不同结构的弹性粒子ACR、CPE和ABS及其复合后对PVC冲击性能的影响.结果表明:三种粒子进行单组分增韧改性PVC时,ACR的改性效果最好,且在用量为15份时缺口冲击强度达到最大;两组分复合增韧改性PVC时,CPE/ABS、CPE/ACR都出现了协同增韧效应,且CPFJABS(质量比4/1)协同增韧效果最好,与同等用量(15份)的CPE相比,其缺口冲击强度增加了114.2%.  相似文献   

19.
以钛酸酯偶联剂为改性剂对滑石粉进行表面改性,然后将其填充到聚丙烯(PP)中,制成PP/改性滑石粉复合材料。考察了滑石粉用量对PP/滑石粉复合材料阻燃性能和力学性能的影响,并对比了滑石粉改性前后复合材料力学性能及阻燃性能的差异。结果表明:添加滑石粉可提高PP复合材料的阻燃性能和耐热性能。另外,未改性滑石粉的添加降低了PP复合材料的力学性能,而适量改性滑石粉的添加(≤20 phr)则使复合材料的拉伸强度和冲击强度得到提升。  相似文献   

20.
采用热塑性聚氨酯弹性体(TPU)和无机纳米粒子复合增韧改性聚甲醛(POM),制备了刚韧平衡的POM/TPU共混物。讨论TPU及无机纳米粒子种类、稳定剂体系及注塑工艺对复合材料力学性能的影响。结果表明,聚酯型TPU-2对POM增韧效果较好;纳米Ca CO3可以有效提高共混材料强度;添加抗氧剂Irganox 245制备的复合材料具有更高的断裂伸长率和冲击韧性;注塑工艺对POM/TPU复合材料性能影响较大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号