首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以左旋和右旋丙交酯为原料,通过开环聚合制备了含有左旋和右旋乳酸链段的聚乳酸立构嵌段共聚物.采用红外光谱对其分子结构进行表征,表明共聚物已成功合成;并采用差示扫描量热仪和X射线衍射仪对共聚物的熔点和晶型进行研究,表明所得嵌段共聚物具有立构复合结构;采用乌氏粘度计对共聚物的分子量进行研究,表明共聚物的粘均分子量为25600...  相似文献   

2.
采用直接熔融缩聚法制备不同分子量特征的聚乳酸预聚物,将分子量相近的PLLA和PDLA预聚物等量混合,经过熔融共混后再进行固相聚合,制备得到聚乳酸立构复合物.结果表明:sc-PLA与两种PLA预聚物相比,熔点提高50℃左右,通过固相聚合PLA的分子量也得到显著提高.该方法工艺简单,产物纯净,是改善聚乳酸耐热性的一种有效途径.  相似文献   

3.
采用高分子设计,以α-甲基萘锂为引发剂,环己烷为溶剂,二哌啶乙烷为调节剂,合成了立构三类段1,2-1,4-1,2-聚丁二烯。结果表明:当该聚合物的1,2-结构摩尔分数为53%-84%,1,4-结构摩尔分数为20%-52%时,试样具有2个Tg;相对于分子质量越主,越容易产生生观相分离。  相似文献   

4.
用红外光谱仪和毛细管流变仪考察了不同微观结构,不同嵌段比、不同分子量的两嵌段1,4-1,2-聚丁二烯(1,4-1,2-PB)的结构与性能的关系。结果表明,PB的微观相分离主要取决于聚合物中1,2-PB嵌段的1,2-结构含量、1,2-PB/1,4-PB嵌段比及分子量。呈微观相分离的两嵌段1,4-1,2-PB在DSC-TDA图谱中出现两个玻璃化转变温度,其特性粘数随1,2-PB嵌段的增加出现重大值,且具有较低的冷流性,较好的加工性及较高的屈服强度。  相似文献   

5.
用二哌啶乙烷(DPE)作为丁二烯阴离子聚合的调节剂,n-BuLi为引发剂,环己烷为溶剂,合成出1,2-结构含量为100%的1,2-聚丁二烯(1,2-PB)和1,2-1,4-立构二嵌段聚丁二烯(1,2-1,4-PB)。30℃聚合时,DPE/n-BuLi(mol比)从1.0增加到10.0,表观增长反应速度常数 k_p″下降 32%;60℃聚合时,下降 47%。当 DPE/n-BuLi分别为 1.0、5.0和 10.0时,表观活化能分别为55.4、42.9和24.9kJ/mo1。生成1,2-PB和1,2-1,4-PB中1,2-PB嵌段的k_p″基本相等。  相似文献   

6.
以α-甲基萘锂(α-MNLi)为引发剂、二哌啶乙烷(DPE)为调节剂、环己烷为溶剂的丁二烯负离子聚合体系,研究了DPE/α-MNli、聚合温度与聚合物1,2-结构含量关系,合成出1,2一结构近100%的1,2-聚丁二烯(1,2-PB)和1,2-1,4-1,2-PB。反应动力学研究表明:1,4-PB与1,2-PB中单体浓度与反应速率呈一级方程关系;40℃时,生成1,4-PB的反应动力学方程式为-d[M]/dt=0.28[C] ̄0.5[M];DPE用量增大,表观增长反应过度常数K_p ̄η减小;求得不同条件下的表观增长活化能。  相似文献   

7.
采用熔融缩聚法制备聚L-乳酸(PLLA)和聚D-乳酸(PDLA)预聚物;将相对分子质量相近的PLLA和PDLA预聚物分别溶于二氯甲烷中,进行溶液共混,制备部分或全部立构复合聚乳酸(sc-PLA);采用固相聚合的方法提高sc-PLA的相对分子质量,并对sc-PLA的结构和性能进行了表征。结果表明:sc-PLA的熔点比聚乳酸约高55℃,且与立构复合晶体结构有关;随着共混物中PLLA含量的增加,固相聚合后,scPLA的相对分子质量增加;立构复合结构的形成并不能提高sc-PLA的热降解温度,提高相对分子质量能明显提高sc-PLA的热稳定性,且相对分子质量越大,sc-PLA初始热降解温度越高,最高可达270℃。  相似文献   

8.
以α-甲基萘锂(α-MNLi)为引发剂,二哌啶乙烷(DPE)为调节剂,环己烷为溶剂的丁二烯负离子聚合体系,研究了DPE/α-MNLi聚合温度与聚合物1,2-结构含量关系,合成了1,2-结构近100%的1,2-聚丁二烯(1,2-PB)和1,2-1,4-1,2-PB反应动力学研究表明:1,4-PB与1,2-PB中单体浓度与反应速率呈一级方程关系;40℃时,生成1,4-PB的反应动力学方程式为-d(M)  相似文献   

9.
用α -甲基萘锂作为双官能团引发剂 ,通过丁二烯在环己烷中进行负离子聚合 ,达到一定转化率后 ,加入极性改性剂 ,继续聚合至结束 ,合成了不同嵌段比的 1,2 - 1,4 - 1,2立构三嵌段聚丁二烯 ,并用三异丁基铝及 2 -乙基己酸钴作为加氢催化剂 ,制备了氢化立构嵌段聚丁二烯。考察了不同极性改性剂及其用量和聚合温度对聚丁二烯微结构的影响 ,分析表征了立构嵌段聚丁二烯及氢化物。结果表明 ,当引发剂用量一定时 ,极性改性剂 /引发剂的摩尔比越大 ,1,2 -链节摩尔分数越高 ;当加入极性改性剂时 ,1,2 -链节摩尔分数随聚合温度的降低而增加 ,1,2 -嵌段的生成宜控制在 0℃ ;立构三嵌段聚丁二烯的相对分子质量分布很窄 ,且存在 2个玻璃化转变温度。氢化物的结晶度为 30 % ,为 (1-丁烯 -乙烯 - 1-丁烯 )三嵌段共聚物 ,呈现热塑性弹性体的行为 ;当其特性黏数大于 2 0dL·g-1,且聚1-丁烯的质量分数为 2 0 %~ 6 0 %时 ,其力学性能较好。  相似文献   

10.
考察了以1,1,4,4-四苯-1,4-二锂丁烷为引发剂,二哌啶乙烷为结构调节剂,环己烷为溶剂的丁二烯负离子聚合。研究了DPE用量和聚合温度对聚丁二烯微观结构的影响。  相似文献   

11.
立构嵌段聚丁二烯的研制   总被引:2,自引:2,他引:0  
  相似文献   

12.
13.
游倩倩 《精细化工》2012,29(7):646-650
以α,α'-二甲基-α-乙酸-三硫代碳酸酯(BDATC)为链转移剂,采用可逆-加成-断裂链转移(RAFT)自由基聚合方法合成了末端带有—COOH官能团的两亲性嵌段共聚物聚苯乙烯-b-聚甲基丙烯酸聚乙二醇单甲醚-b-聚苯乙烯(PSt-b-POEOMA-b-PSt),这种含有亲水性端基的嵌段共聚物可以自组装成核-壳结构的纳米微粒,用于载药高分子的模板研究。利用FTIR、1HNMR、GPC对产物结构进行表征,用热失重(TG)和差示扫描量热(DSC)的方法研究了3种不同比例的嵌段共聚物的热性能。实验结果表明,通过RAFT聚合方法得到了所设计的嵌段共聚物,相对分子质量(简称分子量,下同)分布1.35左右;嵌段共聚物的热稳定性较好,通过玻璃化转变温度(Tg)的变化推测出嵌段共聚物中两种嵌段比例对两嵌段相容性的影响。  相似文献   

14.
在以n-Buli为引发剂,环己烷为溶剂,二哌啶乙烷和二乙基锌为调节剂的丁二烯负离子聚合过程中,采用高分子设计,分别以二甲基二氯硅烷、苯甲酸乙酯和乙酸乙酯为偶联剂,合成了不同分子量、不同嵌段比及共混比的1,4-1,2/1,4-1,2-1,4及1,2-1,4/1,2-1,4-1,2立构嵌段聚丁二烯(PB),考察了共混物的微观相分离、流变性及屈服强度。结果表明,嵌段共混PB的分子量、嵌段比、共混比值只有在一定范围时,共混物才产生微观相分离,分相的嵌段共混PB具有较好的流变性、加工性,较小的冷流性和较高的屈服强度。  相似文献   

15.
在以n-BuLi为引发剂,环己烷为溶剂,二派啶乙烷和二乙基锌为调节剂的丁二烯负离子聚合过程中,采用高分子设计,分别以二甲基二氯硅烷、苯甲酸乙酯和乙酸乙酯为偶联剂,合成了不同分子量、不同嵌段比及共混比的1,4-1,2/1,4-1,2-1,4及1,2-1,4/1,2-1,4-1,2立构嵌段聚丁二烯(PB),考察了共混物的微观相分离、流变性及屈服强度。结果表明,嵌段共混PB的分子量、嵌段比、共混比值只有  相似文献   

16.
对国内外立构两嵌聚丁二烯的研究进行了综述,包括引发剂、结构调节剂、合成方法、聚合动力学及嵌段物的结构与性能研究等  相似文献   

17.
采用Lyocell纤维作为增强纤维,与等比例聚左旋乳酸(PLLA)/聚右旋乳酸(PDLA)熔融共混并通过注塑成型制备了Lyocell纤维/立构聚乳酸(Lyocell/sc-PLA)复合材料,通过DSC、偏光显微镜(POM)、力学性能测试、SEM、维卡软化温度测试等方法,探讨了Lyocell纤维增强对sc-PLA的结构与性能的影响。结果表明:Lyocell/sc-PLA复合材料比sc-PLA的晶体结晶速率更快、球晶尺寸更小,复合材料总结晶度及立构晶体(sc)生成率大幅提高。与sc-PLA相比,Lyocell/sc-PLA复合材料的拉伸强度、杨氏模量及缺口冲击强度分别提高了9.0%、41.2%和47.5%。此外,Lyocell/sc-PLA复合材料的维卡软化温度达到了175.1℃,比sc-PLA提高了106℃,热稳定性显著提高。  相似文献   

18.
使用原子转移自由基聚合法(ATRP)设计合成了大分子引发剂PAN-Br,通过引发甲基丙烯酸锌单体聚合制备得到黏均相对分子质量(简称黏均分子量,下同)分别为7 507、8 517、9 905的嵌段共聚物聚丙烯腈-b-聚甲基丙烯酸锌(PAN-b-PZDMA),利用1HNMR和FTIR确认了大分子引发剂和嵌段共聚物的分子结构。TGA和DSC测试结果显示,ZDMA链段抑制了聚丙烯腈的环化反应,提高了聚合物的热性能。  相似文献   

19.
邹俊  魏芸  吴毅炳  张竞  李世云 《塑料工业》2013,41(5):26-29,42
以丁二酸和1,4-丁二醇为原料,采用熔融缩聚法合成了聚丁二酸丁二醇酯(PBS)预聚物,再与L-丙交酯(L-LA)开环共聚,合成聚乳酸/聚丁二酸丁二醇酯嵌段共聚物(PLLA-co-PBS)。研究了共聚物的结构、热性能、结晶性能和亲水性。结果表明,PBS与L-LA开环共聚生成了PLLA-co-PBS嵌段共聚物;PLLA-co-PBS嵌段共聚物经两个阶段的热分解,且PBS链段的引入提高了聚合物的热稳定性;随着PBS引入量的增加,聚合物的结晶性能,亲水性能都有一定的提高。  相似文献   

20.
采用熔融缩聚法合成了聚酰胺(PA)6/聚四氢呋喃(PTEMG)嵌段共聚物,研究了PA6、PTEMG链段的相对分子质量、含量对嵌段共聚物热性能的影响,通过傅立叶变换红外光谱、核磁共振、差示扫描量热、热重测试等对产物进行分析.结果表明,嵌段共聚物以羧基封端,当PA6、PTEMG链段相对分子质量分别为2 000、1 000时,共聚物的分子序列长度最长,相对分子质量最大;PTEMG链段相对分子质量越小,共聚物的熔点越低;PTEMG链段相对分子质量相同时,随PA6链段相对分子质量的增加,熔点升高;嵌段共聚物中PA6组分的熔融温度范围随着PTEMG含量的增加而逐步变宽;共聚物具有较高的热分解活化能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号