首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel adsorbent, magnetic nanoparticle (γ-Fe2O3)-coated zeolite (MNCZ), was prepared for the removal of arsenic (As) ions from aqueous solution. The influence of different sorption parameters, that is, contact time, acidic reaction (pH) and initial arsenic concentration were studied using batch equilibrium techniques. The results obtained showed that the MNCZ was effective for the removal of As from aqueous solution, and the percentage removal of As could reach over 95.6% at a pH value of 2.5 within 15?min. Moreover, the removal of As depended on the initial concentration of As. For the regeneration of MNCZ material, 0.1?M NaOH was suitable for the desorption of As (70% after 15?min), and the regenerated material showed an adsorption capacity of 93.95% within five cycles. We concluded that MNCZ presents a reusable adsorbent for a fast, convenient and highly efficient removal of As from aqueous solution.  相似文献   

2.
Inorganic arsenic is the most toxic form and has been classified in group 1 as carcinogenic to humans which induces lung, urinary bladder and primary skin cancer. Worldwide concern over its presence in water bodies have prompted much research and policy development focusing on the removal of this chronic human carcinogen. It has been observed that the ash of Unio (Lamellidens marginalis--the fresh water mussel) can be used successfully for the removal of arsenic(V) from the aqueous solutions at low pH (~9.0). Initially the kinetics of oxidation of arsenic(III) by alkaline hexacyanoferrate(III), both with and without adding iridium(III) chloride was studied. Subsequently after complete removal of ferrocyanide, the removal of arsenic(V) produced in the spent reaction mixture was taken up. Out of the five ashes obtained from different sources, the ash of Unio was found to be the best which results in decreasing arsenic(V) concentration from 1000 ppb to >10 ppb, TDS from 16.9 ppt to 8.5 ppt and conductivity from 33.8 mS to 17.1 mS. Kinetic results show the possibility of graphical separation of the reaction proceeding in the absence of iridium(III) from that proceeding in the presence of iridium(III) chloride.  相似文献   

3.
Batch sorption experiments were carried out using a novel adsorbent, guava leaf powder (GLP), for the removal of methylene blue (MB) from aqueous solutions. Potential of GLP for adsorption of MB from aqueous solution was found to be excellent. Effects of process parameters pH, adsorbent dosage, concentration, particle size and temperature were studied. Temperature-concentration interaction effect on dye uptake was studied and a quadratic model was proposed to predict dye uptake in terms of concentration, time and temperature. The model conforms closely to the experimental data. The model was used to find optimum temperature and concentration that result in maximum dye uptake. Langmuir model represent the experimental data well. Maximum dye uptake was found to be 295mg/g, indicating that GLP can be used as an excellent low-cost adsorbent. Pseudo-first-order, pseudo-second order and intraparticle diffusion models were tested. From experimental data it was found that adsorption of MB onto GLP follow pseudo second order kinetics. External diffusion and intraparticle diffusion play roles in adsorption process. Free energy of adsorption (DeltaG degrees ), enthalpy change (DeltaH degrees ) and entropy change (DeltaS degrees ) were calculated to predict the nature of adsorption. Adsorption in packed bed was also evaluated.  相似文献   

4.
A locally available CBBA waste material was used as adsorbent for removal of reactive dyes from synthetic textile wastewater. This study presents the results of our investigation on color removal from synthetic wastewater containing Vertigo Blue 49 (CI Blue 49) and Orange DNA13 (CI Orange 13) by adsorption onto CBBA waste material. The effectiveness of CBBA waste material in adsorbing reactive dyes from aqueous solutions was studied as a function of contact time, initial dye concentration and pH by batch experiments. Leachability of waste material was also evaluated using standard leaching test with deionized water (DIN38414-S4). pH 7 was more favorable for color removal from both Vertigo Blue 49 (CI Blue 49) and Orange DNA (CI Orange 13). Dyestuff adsorption capacities of CBBA for Vertigo Blue 49 and Orange DNA13 were 13.51 and 4.54mg dye/g adsorbent, respectively. The adsorption isotherms for the CBBA can be better described by the Freundlich isotherm. The results showed that the dyestuff uptake process for both dyes followed the second-order kinetics. The bottom ash used in this study is not classified as ecotoxic/hazardous material according to the French proposal for a criterion and evaluation methods of waste ecotoxicity (CEMWE) and the German regulation on Hazardous Waste Classification (HWC).  相似文献   

5.
The reversibility of Zn2+ sorption onto single-walled carbon nanotubes (SWCNTs), multi-walled carbon nanotubes (MWCNTs) and powdered activated carbon (PAC) was investigated to evaluate their repeated availability performance in water treatment. Under the same conditions, the Zn2+ sorption capacity of SWCNTs and MWCNTs was more than that of PAC and could be maintained after several cycles of water treatment and regeneration. A statistical analysis on the replacement cost of these adsorbents based on the best-fit regression of the measured equilibrium capacity of each water treatment cycle was also conducted. The results revealed that the SWCNTs and MWCNTs could be reused through a large number of water treatment cycles and thus appear cost-effective in spite of their high unit cost at the present time.  相似文献   

6.
《Advanced Powder Technology》2021,32(10):3788-3800
Based on one-dimensional (1D) H-titanate nanotubes (H-TNTs: TNTs with loosely distributed H+ across the interlayers), a novel series of Cd0.5Zn0.5S loaded H-TNTs (Cd0.5Zn0.5S/TNTs) composites with varied ratios have been achieved by the in-situ growth method. The as-prepared samples were characterized by (high-resolution) transmission electron microscopy (HR/TEM), XRD, FT-IR, XPS, UV–vis diffuse reflectance spectroscopy (UV–vis DRS), fluorescence spectroscopy (FL), photocurrent, electron spin resonance (ESR) spectroscopy, etc. These studies concurrently revealed a successful formation of Cd0.5Zn0.5S/TNTs heterojunction, and a homogeneous distribution of Cd0.5Zn0.5S nanoparticles over the surface of 1D H-TNTs. The incorporation of the appropriate amount of Cd0.5Zn0.5S nanoparticles (10%) significantly improves the efficiency of photogenerated electron-hole pairs separation. The photocatalytic reduction efficiency of the Cd0.5Zn0.5S/TNTs for Cr(VI) and degradation efficiency for organic molecules increased initially and then decreased with the amount of loaded Cd0.5Zn0.5S nanoparticles. The optimal photocatalytic efficiency was observed at 10 %Cd0.5Zn0.5S/TNTs, which were 2.71-fold and 4.8-fold than that of pure H-TNTs for the removal of the Cr(VI) and the degradation of the organic molecules, respectively. The ESR test signified that the holes (h+) and superoxide radicals (∙O2) played an essential role in the degradation process of organic molecules. Finally, a reasonable explanation for enhanced photocatalysis performance was proposed.  相似文献   

7.
The present work provides a method for removal of the arsenic (III) from water. An ion-exchanger hybrid material zirconium (IV) oxide-ethanolamine (ZrO-EA) is synthesized and characterized which is subsequently used for the removal of selective arsenic (III) from water containing 10,50,100 mg/L of arsenic (III) solution. The probable practical application for arsenic removal from water by this material has also been studied. The various parameters affecting the removal process like initial concentration of As (III), adsorbent dose, contact time, temperature, ionic strength, and pH are investigated. From the data of results, it is indicated that, the adsorbent dose of 0.7 mg/L, contact time 50 min after which the adsorption process comes to equilibrium, temperature (25 ± 2), solution pH (5-7), which are the optimum conditions for adsorption. The typical adsorption isotherms are calculated to know the suitability of the process. The column studies showed 98% recovery of arsenic from water especially at low concentration of arsenic in water samples.  相似文献   

8.
In this paper, pineapple stem (PS) waste, an agricultural waste available in large quantity in Malaysia, was utilized as low-cost adsorbent to remove basic dye (methylene blue, MB) from aqueous solution by adsorption. Batch mode experiments were conducted at 30 degrees C to study the effects of initial concentration of methylene blue, contact time and pH on dye adsorption. Equilibrium adsorption isotherms and kinetic were investigated. The experimental data were analyzed by the Langmuir and Freundlich models and the isotherm data fitted well to the Langmuir isotherm with monolayer adsorption capacity of 119.05mg/g. The kinetic data obtained at different concentrations were analyzed using a pseudo-first-order and pseudo-second-order equation and intraparticle diffusion equation. The experimental data fitted very well the pseudo-second-order kinetic model. The PS was found to be very effective adsorbent for MB adsorption.  相似文献   

9.
A new adsorbent was developed from waste ash resulting from municipal solid waste and coal co-combustion power plant. The ash was firstly subjected to hydrothermal treatment for zeolite synthesis, and then modified with iron(II) ions by agitation (ISZ) or ultrasonic (UISZ) treatment. The effect of operating factors such as pH, contact time, initial As(V) concentration and adsorbent dosage was investigated and the optimum operating conditions were established. The adsorption capacity for As(V) onto UISZ and ISZ were 13.04 and 5.37 mg g(-1), respectively. The adsorption isotherm data could be well described by Langmuir isotherm model. The optimum initial pH values for As(V) removal were 2.5 and 2.5-10.0 by ISZ and UISZ, respectively. The results indicated that ultrasound treatment scattered the particles of the adsorbent uniformly, which was in favor of impregnating iron ions into pores. Leaching of hazardous elements from the used adsorbents was very low. Accordingly, it is believed that the adsorbents developed in this study are environmentally acceptable and industrially applicable for utilization in arsenic-containing wastewater treatment.  相似文献   

10.
Adsorption of reactive orange 16 by quaternary chitosan salt (QCS) was used as a model to demonstrate the removal of reactive dyes from textile effluents. The polymer was characterized by infrared (IR), energy dispersive X-ray spectrometry (EDXS) analyses and amount of quaternary ammonium groups. The adsorption experiments were conducted at different pH values and initial dye concentrations. Adsorption was shown to be independent of solution pH. Three kinetic adsorption models were tested: pseudo-first-order, pseudo-second-order and intraparticle diffusion. The experimental data best fitted the pseudo-second-order model, which provided a constant velocity, k2, of 9.18 × 10−4 g mg−1 min−1 for a 500 mg L−1 solution and a value of k2, of 2.70 × 10−5 g mg−1 min−1 for a 1000 mg L−1 solution. The adsorption rate was dependent on dye concentration at the surface of the adsorbent for each time period and on the amount of dye adsorbed. The Langmuir isotherm model provided the best fit to the equilibrium data in the concentration range investigated and from the isotherm linear equation, the maximum adsorption capacity determined was 1060 mg of reactive dye per gram of adsorbent, corresponding to 75% occupation of the adsorption sites. The results obtained demonstrate that the adsorbent material could be utilized to remove dyes from textile effluents independent of the pH of the aqueous medium.  相似文献   

11.
Macroporous resins containing iminodiacetic acid (IDA) groups (Lewatit TP 207 and Chelex-100) were investigated as a function of concentration, temperature and pH for their sorption properties towards chromium(III). The chromium(III) ions sorbed onto the resin and in the equilibrium concentration were determined by inductively coupled plasma spectrophotometer. The maximum sorption for chromium ions was observed at pH 4.5. Solution pH had a strong effect on the equilibrium constant of Cr(III). The equilibrium constants were 320 and 7 at pH value 4.5 for Lewatit TP 207 and Chelex-100 resin, respectively. The Langmuir isotherm was used to describe observed sorption phenomena. Both the sorbents had high bonding constants with Lewatit TP 207 showing stronger binding. The equilibrium related to adsorption capacity and energy of adsorption was obtained by using plots of Langmuir adsorption isotherm. It was observed that the maximum adsorption capacity of 0.288 mmol of Cr(III)/g for Chelex-100 and 0.341 mmol of Cr(III)/g for Lewatit TP 207 was achieved at pH of 4.5. The rise in temperature caused a slight increase in the value of the equilibrium constant (Kc) for the sorption of chromium(III) ion.  相似文献   

12.
An iron terephthalate (MOF-235), one of the metal-organic frameworks (MOFs), has been used for the removal of harmful dyes (anionic dye methyl orange (MO) and cationic dye methylene blue (MB)) from contaminated water via adsorption. The adsorption capacities of MOF-235 are much higher than those of an activated carbon. The performance of MOF-235 having high adsorption capacity is remarkable because the MOF-235 does not adsorb nitrogen at liquid nitrogen temperature. Based on this study, MOFs, even if they do not adsorb gases, can be suggested as potential adsorbents to remove harmful materials in the liquid phase. Adsorption of MO and MB at various temperatures shows that the adsorption is a spontaneous and endothermic process and that the entropy increases (the driving force of the adsorption) with adsorption of MO and MB.  相似文献   

13.
The 2D transition metal carbides (MXenes) are increasingly considered among of the most promising 2D nanomaterials, because of their unique properties such as hydrophilic nature, metallic conductivity, large surface-area-to-volume ratio, and active surface functionalities. This has led to their growing utilization in water/wastewater treatment and environmental remediation applications, including water purification membranes, heavy metal removal, capacitive deionization, and bactericidal agents. This account will focus on the key characteristic properties of MXenes such as high metallic/electronic conductivity, and catalytic activity, and their utilization for the electrocatalytic and photocatalytic-based environmental remediation applications. We will also address the key challenges facing MXene-based materials in aqueous media and possible mitigation routs.  相似文献   

14.
Sulfated lanthanum oxy-carbonate nanorods (S-La2O2(CO3) NRs) was synthesized by the reverse micelle microemulsion method and then used to modify graphene oxide nanosheets to synthesize of graphene oxide-sulfated lanthanum oxy-carbonate (GO-S-La2O2(CO3)) nanocomposite. By characterization of S-La2O2(CO3) NRs and GO-S-La2O2(CO3) nanocomposite by the Fourier Transform-Infrared (FT-IR) Spectrophotometry, Field Emission-Scanning Electron Microscopy (FE-SEM), Energy-dispersive X-ray spectroscopy (EDS), Transmission Electron Microscopy (TEM) and X-ray diffraction analysis (XRD), GO-S-La2O2(CO3) was used for treatment of malachite green (MG). To find the optimum removal percentage (RP), influencing parameters were investigated by the response surface methodology based on central composite design (RSM-CCD). Adsorption mechanism was evaluated by Dubinin–Radushkevich (D-R), Langmuir, Temkin, Freundlich (two parameter equations) and Sips (Three parameter equations) isotherms and based on the results the adsorption of MG into the GO-S-La2O2(CO3) nanocomposite obeyed by the Freundlich isotherm with the maximum adsorption capacity of 555.5 mg g?1. Also, the results of kinetic analysis show that the adsorption of MG onto the GO-S-La2O2(CO3) nanocomposite followed by the pseudo second order kinetic model. For estimation of adsorption behavior, different machine learning techniques are used and based on the results; ANFIS model has the confidential operation because of fuzzy procedure and flexibility of data mining in distributed adsorption data.  相似文献   

15.
Titanium dioxide nanoparticles were employed for the sorption of selenium ions from aqueous solution. The process was studied in detail by varying the sorption time, pH, and temperature. The sorption was found to be fast, and to reach equilibrium basically within 5.0 min. The sorption has been optimized with respect to the pH, maximum sorption has been achieved from solution of pH 2–6. Sorbed Se(IV) and Se(VI) were desorbed with 2.0 mL 0.1 mol L−1 NaOH. The kinetics and thermodynamics of the sorption of Se(IV) onto Nano-TiO2 have been studied. The kinetic experimental data properly correlate with the second-order kinetic model (k2 = 0.69 g mg−1 min−1, 293 K). The overall rate process appears to be influenced by both boundary layer diffusion and intraparticle diffusion. The sorption data could be well interpreted by the Langmuir sorption isotherm. The mean energy of adsorption (14.46 kJ mol−1) was calculated from the Dubinin–Radushkevich (D–R) adsorption isotherm at room temperature. The thermodynamic parameters for the sorption were also determined, and the ΔH0 and ΔG0 values indicate exothermic behavior.  相似文献   

16.
Hybrid ion-exchange (HIX) media for simultaneous removal of arsenate and perchlorate were prepared by impregnation of non-crystalline iron (hydr)oxide nanoparticles onto strong base ion-exchange (IX) resins using two different chemical treatment techniques. In situ precipitation of Fe(III) (M treatment) resulted in the formation of sphere-like clusters of nanomaterials with diameters of approximately 5nm, while KMnO4/Fe(II) treatments yielded rod-like nanomaterials with diameters of 10-50nm inside the pores of the media. The iron content of most HIX media was >10% of dry weight. The HIX media prepared via the M treatment method consistently exhibited greater arsenate adsorption capacity. The fitted Freundlich adsorption intensity parameters (q=K x C(E)(1/n)) for arsenate (1/n<0.6) indicated favorable adsorption trends. The K values ranged between 2.5 and 34.7mgAs/gdry resin and were generally higher for the M treated media in comparison to the permanganate treated media. The separation factors for perchlorate over chloride (alpha(Cl-)(ClO4-)) for the HIX media were lower than its untreated counterparts. The HIX prepared via the M treatment, had higher alpha(Cl-)(ClO4-) than the HIX obtained by the KMnO(4)/Fe(II) treatments suggesting that permanganate may adversely impact the ion-exchange base media. Short bed adsorber (SBA) tests demonstrated that the mass transport kinetics for both ions are adequately rapid to permit simultaneous removal using HIX media in a fixed bed reactor.  相似文献   

17.
《Advanced Powder Technology》2021,32(12):4788-4804
The development of highly efficient sunlight assisted photocatalysts has been acknowledged as a promising strategy for the enhanced degradation of antibiotics. In this work, effectual fabrication of a novel Bi2WO6/NH2-MIL-88B(Fe) heterostructure was carried through solvothermal route. The structural, morphological and compositional analysis was done by employing number of analytical techniques, namely XRD, FTIR, HRTEM, FESEM, XPS, PL and BET surface area. The prepared Bi2WO6/NH2-MIL-88B(Fe) heterostructure was utilized as an efficient photocatalyst towards decomposition of a typical antibiotic tetracycline (TC) in aqueous medium. It was found that Bi2WO6/NH2-MIL-88B(Fe) heterostructure exhibited improved degradation efficiency of about 89.4% within 130 min of solar illumination than pristine NH2-MIL-88B(Fe) under optimized parameters i.e. initial drug solution of 10 mg/L concentration at pH 4 with 0.35 g/L dose of catalyst. Moreover, adsorption studies, kinetics and isotherms of adsorption on TC were also investigated. Results revealed that adsorption kinetics followed pseudo 2nd order model and isotherm data fitted well with Freundlich model (R2 = 0.99803) as compared to Temkin and Langmuir. The ameliorating photocatalytic capability could be primarily accredited to the heterojunction created among Bi2WO6 and NH2-MIL-88B(Fe) which facilitated the charge transfer and thus determines high catalytic efficiency. The enhanced photocatalyic effect was further verified by electrochemical impedance and photocurrent studies. The prepared composite also exhibited longer carrier lifetime (140.72 ns) compared to pure MOF (132.05 ns) and Bi2WO6 (136.39 ns). Further, based on the radical trapping investigations, role of superoxide radicals was dominant and detailed mechanism was proposed for the photocatalytic degradation process. The major intermediates formed during the course of reaction were also examined using LCMS analysis. The photodegradation was also carried over simulated hospital wastewater by the prepared heterostructure and 60.5% TOC was obtained under solar light in 390 min. Moreover, the synthesized heterostructure showed good recyclability up to three cycles depicting good stability.  相似文献   

18.
In this study, the superparamagnetic adsorbent as Fe@Mg‐Al LDH was synthesised by different methods with two steps for the removal of heavy metal ions from water samples. An easy, practical, economical, and replicable method was introduced to remove water contaminants, including heavy ions from aquatic environments. Moreover, the structure of superparamagnetic adsorbent was investigated by various methods including Fourier transform infrared spectroscopy, field emission scanning electron microscopy, energy‐dispersive X‐ray spectroscopy, and vibrating sample magnetometer. For better separation, ethylenediaminetetraacetic acid ligand was used, forming a complex with antimony ions to create suitable conditions for the removal of these ions. Cadmium and antimony ions were studied by floatation in aqueous environments with this superparamagnetic adsorbent owing to effective factors such as pH, amount of superparamagnetic adsorbent, contact time, sample temperature, volume, and ligand concentration. The model of Freundlich, Langmuir, and Temkin isotherms was studied to qualitatively evaluate the adsorption of antimony ions by the superparamagnetic adsorbent. The value of loaded antimony metal ions with Fe@Mg‐Al LDH was resulted at 160.15 mg/g. The standard deviation value in this procedure was found at 7.92%. The desorption volume of antimony metal ions by the adsorbent was found to be 25 ml. The thermodynamic parameters as well as the effect of interfering ions were investigated by graphite furnace atomic absorption spectrometry.  相似文献   

19.
A mesoporous silica (SBA-15) and amorphous silica (SG) have been chemically modified with 2-mercaptopyridine using the homogeneous route. This synthetic route involved the reaction of 2-mercaptopyridine with 3-chloropropyltriethoxysilane prior to immobilization on the support. The resulting material has been characterized by powder X-ray diffraction, nitrogen gas sorption, FT-IR and MAS NMR spectroscopy, thermogravimetry and elemental analysis. The solid was employed as a Cr(VI) adsorbent from aqueous and non-aqueous solutions at room temperature. The effect of several variables (stirring time, pH, metal concentration and solvent polarity) has been studied using the batch technique. The results indicate that under the optimum conditions, the maximum adsorption value for Cr(VI) was 1.83 ± 0.03 mmol/g for MP-SBA-15, whereas the adsorption capacity of the MP-SG was 0.86 ± 0.02 mmol/g. On the basis of these results, it can be concluded that it is possible to modify chemically SBA-15 and SG with 2-mercaptopyridine and to use the resulting modified silicas as effective adsorbents for Cr(VI).  相似文献   

20.
The sorptive removal of copper ions from aqueous solutions using zeolite NaX has been studied by a batch technique. The influences of solute concentration, temperature and particle size on the sorption process were examined. Several kinetic models were used to test the experimental rate data and to examine the controlling mechanism of the sorption process. Lagergren pseudo-first order, the pseudo-second-order (Ho) and Ritchie second-order models were analyzed using nonlinear regression technique while Weber–Morris model was analyzed using linear least squares method.The obtained results indicated that synthetic zeolite NaX could be used as an efficient material for the sorption of copper ions.A kinetic study has shown that the best fit is achieved when the Ritchie model was applied and that sorption did not involve film or intraparticle diffusion, i.e., they were not the rate controlling steps. The activation energy was found to be 12 kJ/mol in the present study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号