首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 125 毫秒
1.
静息态功能磁共振成像(rs-fMRI)可有效反映大脑活动状况,然而rs-fMRI数据的高随机性和自闭症谱系障碍(ASD)内在的高异质性给ASD计算机辅助诊断带来了不确定性。提出一种基于对比损失的Takagi-Sugeno-Kang(TSK)深度模糊神经网络CL-DeepTSK,结合多输出TSK(MO-TSK)模糊系统与多层感知机(MLP)有效缓解数据不确定性对模型的影响,提升TSK模糊系统的表达能力,并使模型更具可解释性。使用对比损失目标学习准则对MO-TSK与MLP进行联合优化,提高训练样本缺乏时的模型泛化性能。在ABIDE数据集上的实验结果表明,CLDeepTSK的平均正确率和AUC指标分别达到70.0%和0.773,同时获得了30个最具鉴别性的功能连接。上述实验结果证明了CL-DeepTSK能够有效地进行自闭症辅助诊断,并且具有较高的可解释性。  相似文献   

2.
3.
马磊  罗川  李天瑞  陈红梅 《计算机应用》2023,(10):3121-3128
动态特征选择算法能够大幅提升处理动态数据的效率,然而目前基于模糊粗糙集的无监督的动态特征选择算法较少。针对上述问题,提出一种特征分批次到达情况下的基于模糊粗糙集的无监督动态特征选择(UDFRFS)算法。首先,通过定义伪三角范数和新的相似关系在已有数据的基础上进行模糊关系值的更新过程,从而减少不必要的运算过程;其次,通过利用已有的特征选择结果,在新的特征到达后,使用依赖度判断原始特征部分是否需要重新计算,以减少冗余的特征选择过程,从而进一步提高特征选择的速度。实验结果表明,UDFRFS相较于静态的基于依赖度的无监督模糊粗糙集特征选择算法,在时间效率方面能够提升90个百分点以上,同时保持较好的分类精度和聚类表现。  相似文献   

4.
针对无标签高维数据的大量出现,对机器学习中无监督特征选择进行了研究。提出了一种结合自表示相似矩阵和流形学习的无监督特征选择算法。首先,通过数据的自表示性质,构建相似矩阵,结合低维流形能够表示高维数据结构这一流形学习思想,建立一种考虑流形学习的无监督特征选择优化模型。其次,为了保证选择更有用及更稀疏的特征,采用◢l◣▼2,1▽范数对优化模型进行约束,使特征之间相互竞争,消除冗余。进而,通过变量交替迭代对优化模型进行求解,并证明了算法的收敛性。最后,通过与其他几个无监督特征算法在四个数据集上的对比实验,表明所给算法的有效性。  相似文献   

5.
针对高维数据含有的冗余特征影响机器学习训练效率和泛化能力的问题,为提升模式识别准确率、降低计算复杂度,提出了一种基于正则互表示(RMR)性质的无监督特征选择方法。首先,利用特征之间的相关性,建立由Frobenius范数约束的无监督特征选择数学模型;然后,设计分治-岭回归优化算法对模型进行快速优化;最后,根据模型最优解综合评估每个特征的重要性,选出原始数据中具有代表性的特征子集。在聚类准确率指标上,RMR方法与Laplacian方法相比提升了7个百分点,与非负判别特征选择(NDFS)方法相比提升了7个百分点,与正则自表示(RSR)方法相比提升了6个百分点,与自表示特征选择(SR_FS)方法相比提升了3个百分点;在数据冗余率指标上,RMR方法与Laplacian方法相比降低了10个百分点,与NDFS方法相比降低了7个百分点,与RSR方法相比降低了3个百分点,与SR_FS方法相比降低了2个百分点。实验结果表明,RMR方法能够有效地选出重要特征,降低数据冗余率,提升样本聚类准确率。  相似文献   

6.
7.
为解决传统特征选择方法忽略视图内部特征的相关性及不同视图之间的特征关联性问题,提出一种基于自适应相似性的特征选择学习方法.在特征选择时考虑视图内部的特征相关性,对每个视图进行特征选择,通过引入图正则化,充分利用数据的局部几何特性,使同类别特征之间的联系更加紧密,达到增强算法的鲁棒性.引入L1/2稀疏范数降低噪声,提高分类模型的准确率.通过与现有的特征方法进行对比分析,提出方法在ACC和NMI上优于其它方法.  相似文献   

8.
在基于反馈的图像检索中,由于被用户标记为相关和不相关的图像数较少,使得检索问题变成了一个典型的小样本问题.流形可表达数据在低维空间中的内在几何结构,流形正则化的目的是利用这种几何结构来约束解空间,以使最优解能反映数据本身的几何分布.为了解决反馈检索中的小样本问题,本文在流形正则化框架下提出一个新的半监督图像检索算法.在新算法中,流形正则化项只依赖于文中定义的查询子流形,而不依赖于数据集的全局结构.在两个图像集上的实验结果对比表明,本文提出的新算法在检索效果上优于现有的4种state-of-the-art算法.  相似文献   

9.
由于无监督环境下特征选择缺少类别信息的依赖,所以利用模糊粗糙集理论提出一种非一致性度量方法DAM(disagreement measure),用于度量任意两个特征集合或特征间引起的模糊等价类含义的差异程度.在此基础上实现DAMUFS无监督特征选择算法,其在无监督条件下可以选择出包含更多信息量的特征子集,同时还保证特征子集中属性冗余度尽可能小.实验将DAMUFS算法与一些无监督以及有监督特征选择算法在多个数据集上进行分类性能比较,结果证明了DAMUFS的有效性.  相似文献   

10.
无监督特征选择算法可以对高维无标记数据进行有效的降维,从而减少数据处理的时间和空间复杂度,避免算法模型出现过拟合现象.然而,现有的无监督特征选择方法大都运用k近邻法捕捉数据样本的局部几何结构,忽略了数据分布不均的问题.为了解决这个问题,提出了一种基于自适应邻域嵌入的无监督特征选择(adaptive neighborhood embedding based unsupervised feature selection, ANEFS)算法,该算法根据数据集自身的分布特点确定每个样本的近邻数,进而构造样本相似矩阵,同时引入从高维空间映射到低维空间的中间矩阵,利用拉普拉斯乘子法优化目标函数进行求解.6个UCI数据集的实验结果表明:所提出的算法能够选出具有更高聚类精度和互信息的特征子集.  相似文献   

11.
Thyroid hormones are essential for all the metabolic and reproductive activities with significance to growth, and neuron development in the human body. The thyroid hormone dysfunction has many ill consequences, affecting the human population; thereby being a global epidemic. It is noticed that every one in 10 persons suffer from different thyroid disorders in India. In recent years, many researchers have implemented various disease predictive models based on Information and Communications Technology (ICT). Increasing the accuracy of disease classification is a critical and challenging task. To increase the accuracy of classification, in this paper, we propose a hybrid optimization algorithm-based feature selection design for thyroid disease classifier with rough type-2 fuzzy support vector machine. This work uses the hybrid optimization algorithm, which combines the firefly algorithm (FA) and butterfly optimization algorithm (BOA) to select the top-n features. The proposed hybrid firefly butterfly optimization-rough type-2 fuzzy support vector machine (HFBO-RT2FSVM) is evaluated with several key metrics such as specificity, accuracy, and sensitivity. We compare our approach with well-known benchmark methods such as improved grey wolf optimization linear support vector machine (IGWO Linear SVM) and mixed-kernel support vector machine (MKSVM) methods. From the experimental evaluations, we justify that our technique improves the accuracy by large thereby precise in identifying the thyroid disease. HFBO-RT2FSVM model attained an accuracy of 99.28%, having specificity and sensitivity of 98 and 99.2%, respectively.  相似文献   

12.
静息态功能磁共振图像是随着时间变化的一系列三维图像。已有的3D卷积过程本质上是对三维图像数据或二维图像+时间维数据进行处理,无法有效地融合静息态功能磁共振图像的时间轴信息。为此,本文提出了新型的4D卷积神经网络识别模型。具体而言,通过对输入的fMRI使用四维卷积核执行四维卷积,在自闭症患者的功能磁共振图像中,从空间和时间上提取特征,从而捕获图像在时间序列上的变化信息。所开发的模型从输入图像中生成多个信息通道,最终的特征表示结合了所有通道的信息。实验结果表明,在保证模型泛化性能的前提下,该方法融合了功能像的全局信息,并且采集了功能像随时间变化的趋势信息,进而解决了用卷积神经网络处理三维图像随时间变化的分类问题。  相似文献   

13.
This paper presents a novel intelligent diagnosis method based on multiple domain features, modified distance discrimination technique and improved fuzzy ARTMAP (IFAM). The method consists of three steps. To begin with, time-domain, frequency-domain and wavelet grey moments are extracted from the raw vibration signals to demonstrate the fault-related information. Then through the modified distance discrimination technique some salient features are selected from the original feature set. Finally, the optimal feature set is input into the IFAM incorporated with similarity based on the Yu’s norm in the classification phase to identify the different fault categories. The proposed method is applied to the fault diagnosis of rolling element bearing, and the test results show that the IFAM identify the fault categories of rolling element bearing more accurately and has a better diagnosis performance compared to the FAM. Furthermore, by the application of the bootstrap method to the diagnosis results it can testify that the IFAM has more capacity of reliability and robustness.  相似文献   

14.
刘大莲    田英杰 《智能系统学报》2022,17(4):707-713
为了充分利用教育大数据资源,促进教学改革良性发展,本文利用可拓支持向量机、 可拓k-均值聚类等多种可拓数据挖掘方法及皮尔逊相关系数,对高校学生数学课程的平时作业、期中和期末考试成绩等进行挖掘和分析,探索试卷设计的科学性,学生对知识点的掌握程度,以及哪些题目是影响学生成绩的主要因素,针对每个学生给出其该门课程日后学习的侧重点等。将不断发展的前沿科研方法应用于需要不断改革的教育教学中,同时也对长期沉睡的庞大的学生成绩数据加以充分利用,科研指导教学,教学反哺科研,起到很好的示范作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号