共查询到19条相似文献,搜索用时 78 毫秒
1.
首先,介绍了现阶段目标检测的发展并进行分类;然后阐述了YOLO系列算法,特别是YOLO中重要的核心机制,如损失函数、网络结构、优化策略、k-means聚类和批归一化;其次,对YOLO的应用场景进行介绍,如应用于行人检测、工业以及医学方面;最后,总结YOLO系列算法的特点以及未来改进方向。本文对研究基于深度学习的目标检测系统具有一定的指导意义。 相似文献
2.
针对实时目标检测YOLO(You Look Only Once)算法中存在的检测精度低和网络模型训练速度慢等问题,结合批再规范化算法处理小批样本以及非独立同分布数据的优势,提出了在YOLO网络结构加入批再规范化处理的改进算法。该YOLO改进算法把卷积层经过卷积运算产生的特征图看作一个个神经元,然后对这些神经元进行规范化处理。同时,在网络结构中移除了Dropout,并增大了网络训练的学习率。实验结果表明,该改进算法相对于原YOLO算法具有更高的检测精度、更快的实时检测速度以及通过适当设置批样本大小可使网络模型在训练时间和硬件设备方面成本有一定的降低。 相似文献
3.
目标检测是计算机视觉领域中一个相当活跃的研究领域,通过设计大型的深度卷积神经网络来提高目标检测的精度是一种十分有效的方法,然而目前在内存受限的应用场景中并不支持部署大型目标检测网.针对以上问题,文中提出了一种基于You Only Look Once(YOLO)系列单镜头目标检测网络设计原则的轻量级目标检测网,融合了GhostNet中的Ghost Module模块,并参考了MobileNet-v3中的通道注意力模块SE(Squeeze-and-Excitation),在卷积块中加入更优的ECA(Efficient Channel Attention)模块可以更好地利用可用的网络容量,使得网络在减少体系结构和计算的复杂度以及提升模型性能之间实现强的平衡;并且采用了Distance-IoU loss来解决检测框定位不准的问题,有效地提升了网络的收敛速度.最终模型的参数数量被压缩到了1.54 MB,小于YOLO Nano(即4.0MB),并且在VOC2007测试集上的mAP达到了72.1%,高于现有的YOLO Nano(即69.1%). 相似文献
4.
为实现海面船舰目标的快速、准确检测,提出一种改进的船舰目标检测算法.在网络结构方面根据船舰目标的特点,对浅层信息进行强化重构以降低小目标的漏检率,同时引入改进的残差网络增加网络深度和降低网络参数计算量,并且采用金字塔网络进行多尺度特征融合,以兼顾图像中大小船舰目标的检测性能.在网络训练中利用迁移学习策略进行网络模型的训... 相似文献
5.
目前深度神经网络模型需要部署在资源受限的环境中,故需要设计高效紧凑的网络结构。针对设计紧凑的神经网络提出一种基于改进注意力迁移的模型压缩方法(KE),主要使用一个宽残差教师网络(WRN)指导一个紧凑的学生网络(KENet),将空间和通道的注意力迁移到学生网络来提升性能,并将该方法应用于实时目标检测。在CIFAR上的图像分类实验验证了经过改进注意力迁移的知识蒸馏方法能够提升紧凑模型的性能,在VOC上的目标检测实验验证了模型KEDet具有很好的精度(72.7 mAP)和速度(86 fps)。实验结果充分说明基于改进注意力迁移的目标检测模型具有很好的准确性和实时性。 相似文献
6.
7.
视盘的各个参数是衡量眼底健康状况和病灶的重要指标,视盘的检测和定位对于观察视盘的形态尤为重要。在以往的视盘定位研究中,主要根据视盘的形状、亮度、眼底血管的走向等特征使用图像处理的方法对眼底图像中视盘进行定位。由于人为因素影响较大,特征提取时间较长,且视盘定位效率低,因此提出一种基于YOLO算法的眼底图像视盘定位方法。利用YOLO算法将眼底图像划分为N×N的格子,每个格子负责检测视盘中心点是否落入该格子中,通过多尺度的方式和残差层融合低级特征对视盘进行定位,得到不同大小的边界框,最后通过非极大抑制的方式筛选出得分最高的边界框。通过在3个公开的眼底图像数据集(DRIVE、DRISHTI-GS1和MESSIDOR)上,对所提出的视盘定位方法进行测试,定位准确率均为100%,实验同时定位出视盘的中心点坐标,与标准中心点的平均欧氏距离分别为22.36 px、2.52 px、21.42 px,验证了该方法的准确性和通用性。 相似文献
8.
9.
叶裴雷 《电脑编程技巧与维护》2021,(7):41-42
随着计算机信息技术的全面发展,进行深度的学习成为计算机发展的重要方向.通过计算机的识别和定位功能,可以更好地进行图像的识别,以及确定具体的位置和类别,可以采用成像时光照、遮挡等因素的干扰,来对这一领域进行广泛的运用,进而通过技术的更新来大大解放生产力.基于此,进行了YOLO的改进目标检测算法分析,并进行了对策思路.改进... 相似文献
10.
随着我国油气勘探技术的发展,裂缝性储积层在油气的勘探开发中发挥着越来越重要的作用.现有的裂缝识别仍然局限于人工分割裂缝部分再进行分类,没法从整个油井地下的成像测井图像中检测出裂缝的存在.该文针对测井数据和图像资料,研究了裂缝经Hough变换后的正弦曲线特性,由此人工制造了大量图像代替成像数据进行标注,并应用目标检测相关... 相似文献
11.
Currently, driver assistance and autonomous driving functions are emerging as essential convenience functions in automobiles. For autonomous driving, fast and accurate lane recognition is required, along with driving environment recognition. The recognized lanes must be divided into ego and left- and right-side lanes. Among deep learning, the You Only Look Once (YOLO) network is widely known as a fast and accurate object detection technique. The general methods are not robust to angle variations of the objects because of the use of a traditional bounding box, a rotation variant structure for locating rotated objects. The rotatable bounding box (RBBox) can effectively handle situations where the orientation angles of the objects are arbitrary. This study uses a YOLO approach with RBBox to recognize multi-lane accurately. The proposed method recognizes the ego lane and its surrounding lanes by accurately distinguishing them. And the proposed method shows stable multi-lane recognition performance by predicting them that exist in the images but do not exist in the ground truth of the TuSimple data set. Even compared to other lane recognition methods, it shows good competitiveness. Nevertheless, more training data and network learning are needed in a specific road environment (a lane is centered on the image). 相似文献
12.
针对TINY YOLO车辆检测算法计算量过大,且在小型嵌入式系统中难以达到实时检测要求的问题。利用小型Zynq SoC系统的架构优势以及TINY YOLO的网络权值中存在大量接近零的权值参数这一特点,提出硬件并行加速的改进算法,称为浓缩小型深度网络(Xerantic-TINY YOLO,X-TINY YOLO)车辆检测算法。首先对TINY YOLO中网络结构进行压缩;其次采用高效多级流水线、流水线内全并行的方式对卷积计算部分进行算法加速;最后提出与网络结构相配合的数据切割和传输方案。实验结果表明,X-TINY YOLO仅消耗50%的片内硬件资源,可在相对于GPU和CPU性价比更高更适合嵌入式场景的Zynq SoC系统上实现,且其检测速度达到24帧/s,满足车辆检测的实时性要求。 相似文献
13.
为了准确识别X线图像中的微钙化簇以进行乳腺癌的辅助诊断与早期预防,结合细粒度级联增强网络(FCE-Net)与多尺度特征融合算法(MFF),提出微钙化簇目标检测方法.首先构建FCE-Net累加卷积模块层级权重,并增强多分支结构,得到细粒度卷积特征图.然后构建MFF候选检测网络,通过二倍上采样融合多尺度特征,得到目标置信度和区域坐标.最后在感兴趣区域池化层分类目标并调整边界框.在MIAS数据集上实验表明,结合FCE-Net与MFF可以提升微小目标的深层特征提取能力,同时增强目标分类与定位的准确度. 相似文献
14.
已有的火灾检测方法往往依赖高性能的机器,在嵌入式端和移动端检测速度较慢、误检率较高,尤其是无法解决小尺度火焰漏检问题.针对上述问题,文中提出基于YOLO的火焰检测方法.使用深度可分离卷积改进火焰检测模型的网络结构,并使用多种数据增强技术与基于边框的损失函数以提高精度.通过参数调优,在保证检测准确率的情况下,实现在嵌入式... 相似文献
15.
针对传统方法对国际音标(IPA)的字符特征提取存在的识别精度低、实效性差等问题,提出了一种候选框密度可变的YOLO网络国际音标字符识别方法。首先,以YOLO网络为基础,结合国际音标字符图像X轴方向排列紧密、字符种类和形态多样的特点来改变YOLO网络中候选框的分布密度;然后,增加识别过程中候选框在X轴上的分布,同时减小Y轴方向上的密度,构成YOLO-IPA网络。对采集自《汉语方音字汇》的含有1360张、共72类国际音标图像的数据集进行检验,实验结果表明:所提方法对尺寸较大的字符识别率达到93.72%,对尺寸较小的字符识别率达到89.31%,较传统的字符识别算法,大幅提高了识别准确性;同时,在实验环境下检测速度小于1 s,因而可满足实时应用的需求。 相似文献
16.
为了实现桥梁表面裂痕的快速准确检测和及时修复,在目标检测网络YOLOv3的基础上,结合深度可分离卷积与注意力机制,提出实时检测桥梁表面裂痕的轻量级目标检测网络.使用深度可分离卷积操作替换YOLOv3的标准卷积操作,达到降低网络参数量的目的.同时为了解决深度可分离卷积操作带来的网络精度下降的问题,引入MobileNet v2的反转残差块.卷积块注意力模块同时关注图像的通道注意力和空间注意力,较好地进行特征的自适应学习.实验表明,文中算法可实现对桥梁表面裂痕的实时检测.相比YOLOv3,具有更高的检测精度和检测速度. 相似文献
17.
18.
随着交管部门对非机动车监管力度的增强,在道路交通监控视频中检测和识别非机动车将逐渐成为电子交警系统的必备功能。由于非机动车密度大,容易互相遮挡,且在监控视频中所占面积往往较小,容易出现检测定位不准确和漏检等问题。针对非机动车检测定位不准确和漏检问题,基于YOLOv3,提出一种改进的非机动车检测与识别模型,通过设计新的特征融合结构降低非机动车漏检率,使用GIOU损失提高定位准确度。实验结果表明,所提出的改进模型在自建真实复杂场景非机动车数据集上取得了优于YOLOv3的检测结果,将检测的平均检测准确率(mAP)提高了3.6%。 相似文献
19.
在某些固定的工业应用场景中,对目标检测算法的漏检容忍性非常低。然而,提升召回率的同时,目标周围容易规律性地产生一些无重叠的虚景框。传统的非极大值抑制(NMS)策略主要作用是抑制同一目标的多个重复检测框,无法解决上述问题。为此设计了一种各向异性NMS方法来对目标周围不同方向采取不同的抑制策略,从而有效消除规律性的虚景框。固定的工业场景中的目标形状和规律的虚景框往往具有一定关联性。为了促进各向异性NMS在不同方向的精确执行,设计了一种比例交并比(IoU)损失函数用来引导模型拟合目标的形状。此外,针对规则目标使用了一种自动标注的数据集增广方法,在降低人工标注工作量的同时扩大了数据集规模。实验结果表明,所提方法在轧辊凹槽检测数据集上的效果显著,应用于YOLO系列算法时在不降低速度的同时提升了检测精度。目前该算法已成功应用于某冷轧厂轧辊自动抓取的生产线。 相似文献