共查询到18条相似文献,搜索用时 78 毫秒
1.
语音是信息传递的载体.情感作为语音携带的一种突出的信息,左右了语言的释义.在对现有语音情感识别方法进行研究的基础上,提出一个深度迁移网络——基于注意力机制的长短时动态对抗适配网络(Attention-based LSTM Dynamic Adversarial Adaptation Networks,LSTM-TF-a... 相似文献
2.
张震 《信息技术与信息化》2023,(6):121-124
深度迁移学习技术是通过深度神经网络从一项任务中获得的知识来解决其他相关任务,作为机器学习的一种研究方向,已经得到广泛应用。文章首先介绍了在自然语言处理任务中深度迁移学习应用于文本分类的背景,深度迁移学习的定义,其次通过文献分析了近几年深度迁移学习以实例、映射、网络和对抗四种迁移方式及在文本分类中应用的现状,最后对借助深度迁移学习模型完成文本分类任务的应用进行总结和展望。 相似文献
3.
针对实际情况下训练和测试数据来自不同领域数据库导致识别性能下降的问题,提出了一种基于迁移判别回归的跨域语音情感识别方法。首先,引入最大均值差异和图拉普拉斯项作为域间联合距离度量,在减小概率分布差异的同时,很好地保留数据的局部几何结构,从而学习到一个可迁移的公共特征表示。其次,本文采用一种能量保持策略,以避免迁移过程中目标域信息的丢失。此外,通过引入判别回归项,利用已标记的源域样本在公共子空间中训练一个可迁移的判别回归模型。最后,为了使学习到的模型具有特征选择能力和鲁棒性,分别对投影矩阵和回归项施加L2,1范数约束。在3个公开数据集上的实验结果表明,本文提出的算法相较于其他几种迁移学习方法具有更好的识别性能。 相似文献
4.
5.
迁移学习技术可以利用经验信息辅助当前任务,已在计算机视觉和语音识别领域得到广泛应用,但在电磁领域还没有取得明显的成就.电磁环境变化速度快,源数据或分类器模型在新环境中性能会显著下降,重新训练不仅需要大量的数据且费时费力.迁移学习技术与电磁目标识别任务十分相关,本文采用实测电磁目标数据集,探索迁移学习在解决电磁目标小样本... 相似文献
6.
语音情感识别是利用计算机建立语音信息载体与情感度量之间的关系,并赋予计算机识别、理解人类情感的能力,语音情感识别在人机交互中起着重要作用,是人工智能领域重要发展方向。本文从语音情感识别在国内外发展历史以及开展的一系列会议、期刊和竞赛入手,分别从6个方面对语音情感识别的研究现状进行了梳理与归纳:首先,针对情感表达从离散、维度模型进行了阐述;其次,针对现有的情感数据库进行了统计与总结;然后,回顾了近20年部分代表性语音情感识别发展历程,并分别阐述了基于人工设计的语音情感特征的情感识别技术和基于端到端的语音情感识别技术;在此基础之上,总结了近几年的语音情感识别性能,尤其是近两年在语音领域的重要会议和期刊上的语音情感识别相关工作;介绍了语音情感识别在驾驶、智能交互领域、医疗健康,安全等领域的应用;最后,总结与阐述了语音情感识别领域仍面临的挑战与未来发展方向。本文旨在对语音情感识别相关工作进行深入分析与总结,为语音情感识别相关研究者提供有价值的参考。 相似文献
7.
人脸表情识别是模式识别研究的一个重要领域,现实环境中人脸表情识别容易受到光照、姿态、个体表情差异等因素的影响,识别效果仍有待提高。为了取得更好的人脸表情识别效果,本文提出一种基于迁移卷积神经网络的人脸表情识别方法,本文在训练得到人脸识别网络模型的基础上,采用迁移学习方法将所得人脸识别模型迁移到人脸表情识别任务上,并提出Softmax-MSE损失函数和双激活层(Double Activate Layer, DAL)结构,以提高模型的识别能力。在FER2013数据库和SFEW2.0数据库上的实验表明,本文所提方法分别取得了61.59%和47.23%的主流识别效果。 相似文献
8.
辐射源个体识别作为一种电子侦察技术,在战场敌我识别、目标态势感知、无线网络安全、频谱资源管理等军用和民用领域均具有重要应用价值。通过对国内外辐射源个体识别领域的研究进行系统性梳理,介绍了基于传统机器学习、深度学习、迁移学习等3类辐射源个体识别方法并分析了其优缺点。传统基于深度学习的辐射源个体识别方法假设训练数据与测试数据是同分布的,但在真实测试场景中,由于辐射源个体的中心频率、发送速率、接收距离以及接收机等都可能发生变化,导致训练数据与测试数据分布往往不同。迁移学习作为一种解决数据不同分布的技术逐渐成为辐射源个体识别领域的主流研究方向,重点介绍了基于迁移学习的辐射源个体识别方法,讨论了所提出方法未来的研究方向与面临的挑战,并给出相应的解决方案,同时对辐射源个体识别的未来研究方向进行了展望。 相似文献
9.
10.
11.
Journal of Signal Processing Systems - Speech emotion recognition is very challenging because the definition of emotion is uncertain and the feature representation is complex. Accurate feature... 相似文献
12.
针对当前小型无人机目标图像识别方法准确率较低的问题,提出了一种基于迁移集成学习的无人机图像识别算法。首先,基于AlexNet、VGGNet-19、Inception-V3以及ResNet-50四种结构具有差异的卷积神经网络对源数据集进行预训练,获取图像的深层次特征;然后,对目标数据集进行迁移学习,得到目标的分类特征,构建分类模型;之后,采用相对多数投票法和加权平均法的集成学习方法,对分类模型进行集成得到迁移集成模型。构建了一个包含小型无人机图像、飞鸟图像以及直升机图像的图像数据集UavNet,在对数据集进行数据增强的基础上开展了图像识别算法性能实验,结果表明,算法对多类目标的识别准确率为99.42%,无人机类目标识别的F1-score指标为99.12%,优于主流的卷积神经网络方法和传统的支持向量机方法,具有一定的理论意义和应用价值。 相似文献
13.
基于一种改进的监督流形学习算法的语音情感识别 总被引:2,自引:0,他引:2
为了有效提高语音情感识别的性能,需要对嵌入在高维声学特征空间的非线性流形上的语音特征数据作非线性降维处理。监督局部线性嵌入(SLLE)是一种典型的用于非线性降维的监督流形学习算法。该文针对SLLE存在的缺陷,提出一种能够增强低维嵌入数据的判别力,具备最优泛化能力的改进SLLE算法。利用该算法对包含韵律和音质特征的48维语音情感特征数据进行非线性降维,提取低维嵌入判别特征用于生气、高兴、悲伤和中性4类情感的识别。在自然情感语音数据库的实验结果表明,该算法仅利用较少的9维嵌入特征就取得了90.78%的最高正确识别率,比SLLE提高了15.65%。可见,该算法用于语音情感特征数据的非线性降维,可以较好地改善语音情感识别结果。 相似文献
14.
Speech emotion recognition(SER)is the use of speech signals to estimate the state of emotion.At present,machine learning is one of the main research methods of ... 相似文献
15.
Mobile Networks and Applications - This study proposes a system for the automatic recognition of radar waveforms. This system mainly uses the obvious difference in Choi–Williams distribution... 相似文献
16.
Wireless Personal Communications - It is critical for a computer to understand the speaker’s mood during a human–machine conversation. Until now, we’ve only used neutral phrases... 相似文献
17.
18.
Gesture Recognition: A Survey 总被引:2,自引:0,他引:2
Mitra S. Acharya T. 《IEEE transactions on systems, man and cybernetics. Part C, Applications and reviews》2007,37(3):311-324
Gesture recognition pertains to recognizing meaningful expressions of motion by a human, involving the hands, arms, face, head, and/or body. It is of utmost importance in designing an intelligent and efficient human-computer interface. The applications of gesture recognition are manifold, ranging from sign language through medical rehabilitation to virtual reality. In this paper, we provide a survey on gesture recognition with particular emphasis on hand gestures and facial expressions. Applications involving hidden Markov models, particle filtering and condensation, finite-state machines, optical flow, skin color, and connectionist models are discussed in detail. Existing challenges and future research possibilities are also highlighted 相似文献