共查询到17条相似文献,搜索用时 78 毫秒
1.
2.
路径规划是室内导航研究的关键技术之一。A*算法是一种常见的路径规划算法,当区域的点数量较少时,找寻最优路径是最有效的直接搜索方法。但当路径点规模较大时,使用数值优化算法求解最佳路径的难度急剧增加,导致规划时间所需时间过长,不符合实时性要求。为提高路径规划方法中的效率和稳定性,在梳理室内导航路径规划已有算法和方案的基础上,分析了A*算法的基本思想与实现步骤,并针对室内导航中A*路径算法存在的问题,提出了一种改进型A*算法优化的方案。利用用户对最短距离和直行路程的需求,在位置计算中,引入同时考虑方向和距离启发信息的启发函数,把POI点与寻路节点分开处理,以映射的方式建立联系。将该方案应用于室内导航中A*算法实现伪代码,对算法改进前后进行算法效率测试。结果表明,改进后A*算法的整体效率提升了近50%,改进型A*算法在室内导航路径规划的效率和稳定性比较优,达到了加速导航算法的目的。 相似文献
3.
传统A*算法在面向机器人室内多U型障碍的特殊场景下规划路径时,容易忽略机器人实际大小,且计算时间较长。针对这个问题,提出一种改进A*算法。首先引入邻域矩阵进行障碍搜索以提升路径安全性,然后研究不同类型和尺寸的邻域矩阵对算法性能的影响,最后结合角度信息和分区自适应距离信息对启发函数进行改进以提高计算效率。实验结果表明,改进A*算法可以通过更改障碍搜索矩阵的尺寸来获得不同的安全间距,以保证不同机器人在不同地图环境下的安全性;而且在复杂大环境中与传统A*算法相比寻路速度提高了28.07%,搜索范围缩小了66.55%,提高了机器人在遇到动态障碍时二次规划的灵敏性。 相似文献
4.
针对无人机在自适应巡航路径规划存在的效率低、规划困难等问题,提出一种多角度改进的萤火虫算法。首先利用Chebyshev混沌特性初始化种群,改善了初始种群不易产生的问题;针对步长因子过于固定的问题,引入Levy飞行策略改进位置更新公式和步长更新公式,提高了种群的搜索范围和有效性;其次利用logistic混沌变异改进吸引度系数,提高了个体跳出当前状态逃离局部陷阱解的概率,加快收敛速度;最后基于建立的优化函数进行仿真,结果表明,改进后路径长度减少7.47%,节点减少31.57%,平顺度优于改进前,收敛时间减少18.54%,取得很好的收敛效果,有助于无人机在真实场景完成飞行作业。 相似文献
5.
在动态未知环境下对机器人进行路径规划,传统A*算法可能出现碰撞或者路径规划失败问题。为了满足移动机器人全局路径规划最优和实时避障的需求,提出一种改进A*算法与Morphin搜索树算法相结合的动态路径规划方法。首先通过改进A*算法减少路径规划过程中关键节点的选取,在规划出一条全局较优路径的同时对路径平滑处理。然后基于移动机器人传感器采集的局部信息,利用Morphin搜索树算法对全局路径进行动态的局部规划,确保更好的全局路径的基础上,实时避开障碍物行驶到目标点。MATLAB仿真实验结果表明,提出的动态路径规划方法在时间和路径上得到提升,在优化全局路径规划的基础上修正局部路径,实现动态避障提高机器人达到目标点的效率。 相似文献
6.
7.
传统批通知树(batch informed trees,BIT*)算法结合了RRT*算法和A*算法的优势,但是该算法在复杂环境下无法躲避未知的动态障碍物,无法完成动态路径规划。针对该问题,提出了一种将改进的BIT*算法和改进的DWA算法相融合的算法。在传统BIT*算法的基础上对路径进行拉伸优化,提取关键转折点,减少路径长度;对传统DWA算法的距离评价函数进行改进、引入轨迹点评价函数,避免局部规划过分偏离,也减少了已知障碍物对路径的影响;将改进的BIT*算法与改进的DWA算法相融合,将提取的关键转折点作为DWA的中间目标点,弥补全局规划算法无法躲避动态障碍物的缺点以及局部规划算法全局能力低下的缺点。在动静态地图中对RRT*算法、BIT*算法、DWA算法、改进BIT*算法以及融合算法进行仿真实验,仿真结果表明:在复杂环境中,改进的BIT*算法具有更短的路径和更少的拐点;与传统的DWA算法相比,融合算法规划的路线更平滑,机器人既能实时动态避障抵达终点,又能更加贴近全局路径,保证路线全局最优。 相似文献
8.
对于D^*算法,由于其本身存在一定的缺陷,例如,规划阶段的庞大计算量,所得路径转角相对较大、具有多次转弯数,且若目标点更换后,原有规划不宜再用,应再次作出规划等。因此,对此算法进行改进。基于沃罗诺伊路线图法,将目标环境分解为多个局部环境,选取局部路径目标点时,以局部环境关键节点为主,对于无用节点,采取舍弃操作。使D^*算法的改进基于两点,即子节点选定方式、启发函数的改进,同时最大程度确保路径平滑。仿真结果表明,在转角度数、转弯次数上均有优化,规划时间缩短,路径质量提高,适当保持与障碍物的距离,机器人执行任务的安全性得到保障。在目标点变更后,利用沃罗诺伊路径路线图,机器人以更小的计算量抵达新的目标点。 相似文献
9.
基于改进A*算法的无人机航迹规划 总被引:1,自引:0,他引:1
在无人机航迹规划问题的研究中,针对在执行飞行任务前,需要根据所经区域内已知的地形、地貌、障碍和威胁等信息以及飞机本身机动能力的限制计算出飞行航迹, 并根据规划出的航迹完成飞行任务.能准确识别起始点到目标航路,提出了一种基于改进A*算法的无人机航迹规划方法,将无人机自身的性能和飞行任务结合到A*算法中去,在节点的搜索过程中解决了A*算法大空间搜索耗时多的问题.通过简单的路径消减算法去除不必要的航迹点,使得规划出来的航迹能够最大程度上满足无人机的运动特性.仿真结果表明采用的方法计算速度快并且规划达到最优性能. 相似文献
10.
采用D*Lite算法规划出的路径并不平滑,且预规路径与障碍物均十分接近.除此之外,在动态环境下时,由D*Lite算法重规划得到的路径也离障碍物距离很近,十分容易发生碰撞.针对此问题,引入懒惰视线算法与距离变换相结合的方法改进D*Lite算法.首先,对地图进行距离变换,并引入距离值的启发式代价,使得距离障碍物较远的节点优先被选择.然后,在扩展节点时引入视线算法,增加本地父亲节点和远程父亲节点的概念,使得路径不局限于八邻域扩展,从而进化为任意角度路径规划算法;最后,在遇到未知障碍物时进行局部距离变换,结合启发距离值信息进行重规划,使得重规划得到的路径远离突现的障碍物.仿真实验表明,在不同环境下规划所得到的路径均十分平滑与安全. 相似文献
11.
基于改进A*算法的三维航迹规划技术研究 总被引:2,自引:0,他引:2
A*算法在实现节点搜索时执行的是大空间搜索,该方式在三维空间中对时间和内存的消耗都较大。结合无人机的机动性能限制以及飞行任务来改进A*算法,可以达到缩小搜索空间的目的,同时对open表的管理进行改进,以减少扩展节点排序所花时间,从而整体缩短规划所需时间。通过此种方式规划出来的航迹能够最大程度地满足无人机的机动性能要求,仿真结果表明,此种方式计算速度快且能保证性能接近最优。 相似文献
12.
针对大部分航迹规划算法在陷阱空间下,存在规划时间长、成功率低的问题,提出了一种改进RRT算法。通过将人与RRT算法相结合,由人设置虚拟目标点,引导航迹搜索走出陷阱空间;同时对节点扩展进行优化,保证航迹搜索在可行域内;并设置快速收敛策略,删除冗余节点,使航迹搜索速度加快。最后,通过仿真验证表明,该方法在陷阱空间规划中具有良好的效果,可快速规划可行航迹。 相似文献
13.
针对移动机器人在复杂环境下(包含静态和动态环境)的路径规划效率低的问题,提出了一种改进的A*算法与动态窗口法相结合的混合算法。针对传统A*算法安全性不足的问题,采用障碍规避策略,优化节点的选择方式,增加路径的安全性;针对转折点多的问题,采用递归二分法优化策略,去除冗余节点,减少转弯次数;针对静态环境下路径平滑性不足的问题,采用动态内切圆平滑策略将折线角优化成弧度角,以增加路径的平滑性。对于传统动态窗口法的目标点附近存在障碍物时规划效果不好和容易在凹型槽类障碍物中陷入局部最优的问题,在原有的评价函数中引入了距离偏差和轨迹偏差。最后,对所提的改进A*算法和混合算法分别在静态和动态环境下与其他算法进行仿真比较。从结果可以看出,与传统混合算法相比,临时障碍环境下,路径长度和运行时间分别缩短了13.2%和65.8%;移动障碍环境下,路径长度和运行时间分别缩短了13.9%和44.9%,所提的算法提高了在复杂环境中规划路径的效率。 相似文献
14.
15.
针对传统A*算法规划的路径存在很多冗余点和拐点的问题,提出了一种基于A*算法改进的高效路径规划算法。首先,改进评价函数的具体计算方式,减小算法搜索每个区间的计算量,从而降低寻路时间,并改变生成路径;其次,在改进评价函数具体计算方式的基础上,改进评价函数的权重比例,减少生成路径中的冗余点和拐点;最后,改进路径生成策略,删除生成路径中的无用点,从而提高路径的平滑性;此外,考虑到机器人的实际宽度,改进后算法引入障碍物扩展策略保证规划路径的可行性。将改进A*算法与三种算法进行仿真对比,实验结果表明,改进后的A*算法规划的路径更加合理,寻路时间更短,平滑性更高。 相似文献
16.
针对基于案例推理启发式Q学习算法(CB-HAQL)受案例库质量影响而无法收敛到较优策略的问题,提出基于有效触发机制改进的CB-HAQL算法。首先,根据迭代次数设置触发式案例库更新机制,只在达到阈值时生成或更新案例库,保证案例库质量;其次,设置动态参数调整案例对动作选取影响,使智能体根据对环境掌握程度决定启发影响大小;最后,加入经验倾向性探索动作加快学习效率。实验证明,改进后的算法提升了策略质量和训练速度,无人机完成导航任务证明了学习策略的有效性。 相似文献