首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
为保证转炉熔渣气化脱磷后循环利用的冶炼效果,在实验室进行了气化脱磷炉渣作为返料用于造渣脱磷的热态试验。研究结果表明:气化脱磷渣具备高氧化钙、高碱度、低P_2O_5、高FeO的特点,不需经历成渣过程,可直接用于二次脱磷;采用气化脱磷渣进行铁水脱磷试验时,随着试验温度的提高,铁水终点磷含量呈增大趋势,1 500℃下终点铁水w(P)仅为0.067%,对应的脱磷率为40%;对比气化脱磷渣和配制脱磷剂炉次的脱磷速度可知,在反应前期,气化脱磷渣成渣速度快,气化脱磷渣炉次的铁水磷含量低于配制脱磷剂炉次;但受限于磷容量,气化脱磷渣的终点脱磷效果不如所配脱磷剂,因此建议在工业试验中可将气化脱磷渣与新造渣剂搭配使用,在保证脱磷效果同时,减少造渣料消耗。  相似文献   

2.
 京唐公司炼钢系统铁水转炉预脱磷及“全三脱”铁水少渣冶炼工艺不断进行技术优化,脱磷转炉通过优化废钢尺寸、底吹枪数量和排布,半钢脱磷率可达到70%;铁水经过脱磷转炉脱硅、脱磷后,温度和磷质量分数更加稳定,为脱碳转炉少渣冶炼、自动化炼钢终点双命中率的提高提供了先决条件;脱碳转炉通过采用留渣操作、少渣冶炼技术、溅渣护炉技术后,自动化命中率达到90%以上,炉龄达到7 000炉以上;炼钢车间内渣钢、除尘灰、氧化铁皮等含铁物料实现了自循环消耗。采用“全三脱”铁水冶炼工艺,钢种质量进一步提高,超低磷与超低硫钢中(S+P+N)元素质量分数可稳定控制在0.009 5%以下。  相似文献   

3.
转炉渣用于铁水预脱磷的工艺实验   总被引:1,自引:0,他引:1  
 研究了转炉渣剂的组成及相关工艺因素对铁水脱磷率的影响。结果表明:为降低转炉渣的熔化温度以适应铁水预处理温度的要求,转炉渣的CaF2添加量应控制在15%~20%;采用80%的转炉渣和20%的CaF2配制的转炉渣剂对铁水进行脱磷处理时,脱磷率可达到78%左右;另外,转炉渣剂中的P2O5能显著降低铁水脱磷率。  相似文献   

4.
目前在溅渣护炉过程中进行气化脱磷是一种有效的炉渣除磷技术。为保证转炉熔渣气化脱磷后循环利用的冶炼效果,在实验室进行了气化脱磷渣作为返料用于造渣脱磷的试验研究。研究结果表明,气化脱磷渣用于铁水脱磷时前期脱磷能力强,终点脱磷率低,其终点铁水脱磷率和脱磷速率分别为53.3%和0.16%/min;对比配制脱磷剂炉次可知,配制脱磷剂前期脱磷效果差,终点脱磷率高,其终点铁水脱磷率和脱磷速率分别为91.6%和0.32%/min。根据两者脱磷剂的脱磷优势采用混合配比铁水脱磷,当气化脱磷渣大比例用于铁水脱磷时出现回磷现象;当混合比例为1∶4时脱磷效果最好,终点脱磷率为64.4%。采用生命周期评价法对混合渣料比例为1∶4铁水脱磷进行CO2减排评估,从系统边界的起点到终点预估吨钢可减排CO26.034~10.34 kg,吨钢可节省石灰成本1.8~3.0元。  相似文献   

5.
含有转炉渣的铁水预处理脱磷粉剂的实验研究   总被引:8,自引:1,他引:7  
基于环境保护和降低成本的需要,将转炉渣作为部分脱磷剂加以使用。结果表明:含转炉渣的脱磷剂的脱磷效果与常规脱磷剂相当。采用加入30%转炉渣的脱磷剂处理铁水时,铁水中磷的分配比达到最大值。  相似文献   

6.
 高磷铁水预处理脱磷的难题是脱磷剂用量太大、温降太多,急需研究脱磷能力强的脱磷剂。含有固体颗粒和液渣的非均相脱磷剂比仅含液渣的均相脱磷剂的脱磷能力强很多。为此,针对磷的质量分数为0. 5%的高磷铁水,应用FactSageTM热力学软件优选出脱磷能力强的3种液渣,添加不同数量的硅酸二钙颗粒配制非均相脱磷剂试样,脱磷剂和熔铁在1560℃下反应6h,测定熔铁中的平衡磷含量,用以评价其脱磷能力,然后在1400℃下进行了铁水脱磷预处理试验。研究结果表明,随着硅酸二钙颗粒含量的增加,非均相脱磷剂的脱磷能力明显改善;采用非均相脱磷剂有助于减少渣量和控制反应器内衬的侵蚀;采用非均相脱磷剂对铁水脱磷,仍然需要控制较高的渣铁界面FetO浓度。  相似文献   

7.
除尘灰制备炼钢脱磷剂极具实用价值,但其所含CaO类杂质却会影响脱磷。1 400℃条件下,参考Fe_2O_3-CaO-CaCl_2系脱磷剂,分别利用不同摩尔比的Ca(OH)_2、CaCO_3替换脱磷剂中的CaO,对磷质量分数为0.3%的铁水进行了脱磷试验。同时,分别利用CaO、Ca(OH)_2、CaCO_3作为固定剂,研究了各自的铁水脱磷特征。此外,参考Fe_2O_3-CaO-SiO_2-CaCl_2系脱磷剂,分别利用CaO/SiO_2混合物、CaSiO_3作为脱磷剂初始组分,研究了二者的脱磷差异。结果表明:当Ca(OH)_2以任意摩尔比替换脱磷剂中的CaO时,替换比对脱磷率的影响并不明显;但当使用CaCO_3进行替换时,脱磷率会在替换比超过约0.5后显著下降。而相对于CaO,当以Ca(OH)_2、CaCO_3作为固定剂时,脱磷速率能在初期获得明显提高,但在后期相对下降。此外,相对于CaO/SiO_2混合物,当以CaSiO_3作为脱磷剂初始组分时,脱磷速率在前期和后期均能获得明显提高。  相似文献   

8.
高磷铁水预处理脱磷的难题是脱磷剂用量太大、温降太多,急需研究脱磷能力强的脱磷剂。含有固体颗粒和液渣的非均相脱磷剂比仅含液渣的均相脱磷剂的脱磷能力强很多。为此,针对磷的质量分数为0.5%的高磷铁水,应用FactSageTM热力学软件优选出脱磷能力强的3种液渣,添加不同数量的硅酸二钙颗粒配制非均相脱磷剂试样,脱磷剂和熔铁在1 560℃下反应6h,测定熔铁中的平衡磷含量,用以评价其脱磷能力,然后在1 400℃下进行了铁水脱磷预处理试验。研究结果表明,随着硅酸二钙颗粒含量的增加,非均相脱磷剂的脱磷能力明显改善;采用非均相脱磷剂有助于减少渣量和控制反应器内衬的侵蚀;采用非均相脱磷剂对铁水脱磷,仍然需要控制较高的渣铁界面FetO浓度。  相似文献   

9.
除尘灰制备炼钢脱磷剂极具实用价值,但其所含CaO类杂质却会影响脱磷.1 400℃条件下,参考Fe2O3-CaO-CaCl2系脱磷剂,分别利用不同摩尔比的Ca(OH)2、CaCO3替换脱磷剂中的CaO,对磷质量分数为0.3%的铁水进行了脱磷试验.同时,分别利用CaO、Ca(OH)2、CaCO3作为固定剂,研究了各自的铁水...  相似文献   

10.
在实验室利用转炉渣配制的铁水脱磷剂进行铁水预脱磷试验,测定了脱磷剂组成等因素对脱磷率的影响。结果表明:在铁水脱磷前[Si]≤0.15%条件下,当脱磷剂中转炉渣配比为80%时,相应铁水脱磷率约为78%;Fe2O3和BaCO3代替转炉渣的合适替代量分别约为5%和10%;脱磷剂中(P2O5)含量的增加会导致脱磷率的显著降低,其影响关系式为:ηp(%)=84.01—4.60(P2O5%)。  相似文献   

11.
针对钢厂铁水硅和磷含量较高的特点,采用转炉留渣双渣冶炼工艺以获得稳定的铁水脱磷率。吹炼3 min后加入石灰和污泥球等造渣材料,供氧强度0~3 min时为2.5m3/(t·min),3~4.5 min时为3.2m3/(t·min),温度控制在约1320℃。转炉一次倒渣后,继续吹炼,加入后期造渣料,待一氧化碳体积分数稳定时,适当提高氧枪枪位,促进化渣,并进行终点碳控制。试验结果表明:脱磷期铁水平均脱磷率为58.09%,脱碳期钢水平均脱磷率为85.56%;当半钢温度为1320℃炉渣碱度为2.0,炉渣TFe含量为18%时,在脱磷期能获得较好的铁水脱磷效果;当转炉钢水一倒温度为1580℃,终渣碱度为3.5,炉渣TFe含量为20%时,在脱碳期能够获得较好的脱磷效果;转炉终点[P]e/[P]r为0.90;试验中得到脱磷期和脱碳期炉渣的岩相组成适合铁水脱磷。  相似文献   

12.
研究了复吹转炉铁水脱磷预处理,半钢倒渣后在同一转炉内进行少渣精炼冶炼超低磷钢的工艺。结果表明:在铁水磷含量0.13%条件下,半钢和终点渣碱度(CaO/SiO2)控制在2.0和3.6左右,TFe含量控制在18%左右,半钢倒渣量40%~60%,半钢脱磷率最高达65%,平均为50%,终点脱磷率最高98%,平均为94.6%,冶炼终点钢水磷含量控制在0.007%以下,最低0.003%,满足低磷钢生产要求。  相似文献   

13.
 基于炉外铁水深度预脱硫+转炉铁水预脱磷的铁水预处理工艺是当今低磷或超低磷钢冶炼的重要工艺平台,其中转炉铁水预处理脱磷是关键的技术环节。以国内“双联转炉炼钢法”预脱磷炉实践为出发点,在实验室高温炉上通过顶加脱磷剂、浸入吹氧进行了铁水模拟转炉预脱磷影响因素的试验研究,比较了铁水温度、铁水初始硅质量分数w(Si)i、脱磷渣碱度、供氧制度、搅拌强度、萤石加入量对脱磷效率的影响。结果表明,各因素对脱磷率影响的顺序为铁水温度>w(Si)i>供氧制度>脱磷渣碱度、搅拌强度>萤石加入量;适宜的工艺参数为铁水温度为1 300 ℃,w(Si)i 为0.10%~0.26%或低于0.30%,脱磷渣碱度为2.9~3.0,供氧制度中气氧与固氧各占50%或固氧稍偏多,维持较高的搅拌强度;转炉内铁水预脱磷处理可不加萤石。  相似文献   

14.
含转炉渣的预熔脱磷剂进行铁水脱磷实验   总被引:1,自引:0,他引:1  
在实验室条件下,用部分转炉渣代替预熔脱磷剂中纯化学试剂原料进行铁水预处理脱磷实验研究,研究发现,含有转炉渣的预熔脱磷剂能实现较好的脱磷效果;在1350℃,加入量为10%的条件下,含转炉渣45.73%的预熔脱磷剂能将铁水中的磷由0.21%降低到0.011%,脱磷率可达到94.76%。  相似文献   

15.
复吹转炉双渣吹炼脱磷试验   总被引:1,自引:0,他引:1  
廖鹏  侯泽旺  秦哲  张兴中  仇圣桃 《钢铁》2013,48(1):30-36
 通过现场试验,研究了在同一转炉内进行前期脱磷倒渣后,中后期少渣脱碳以冶炼超低磷钢的工艺,即复吹转炉双渣吹炼脱磷工艺。结果表明:在铁水磷质量分数为0.11%~0.14%条件下,半钢和终点渣碱度控制在20~2.3和3.6~3.8,TFe质量分数控制在14%~16%和16%~18%,半钢倒渣量40%~60%,可以使转炉终点磷质量分数控制在0.007%以下。  相似文献   

16.
张润灏  杨健  叶格凡  孙晗  杨文魁 《炼钢》2022,38(1):1-13
转炉脱磷工艺利用了转炉容积大的特点,可以实现转炉前期快速高效低碱度脱磷.脱碳渣的循环利用降低了石灰等辅料消耗和渣量.在低温低碱度转炉脱磷的条件下,低温在热力学上有利于脱磷,但温度过低会使渣过于粘稠而影响动力学条件并使倒渣困难;适当提高碱度,脱磷效果较好.随着渣中氧化铁含量的上升,脱磷效果先上升后下降.转炉脱磷渣中固液两...  相似文献   

17.
王星  胡显堂  危尚好  周冬升  王东  刘敏 《钢铁》2022,57(11):53-63
 转炉具备冶炼低磷钢的生产能力,但生产超低磷9Ni钢,转炉脱磷工艺仍然是主要难点和研究重点。分析了钢水温度、炉渣碱度、FeO和渣量等对转炉脱磷的影响规律,并结合现场工装设备条件,对转炉双联法、三渣法、双渣法3种脱磷模式进行试验对比。双联脱磷工艺半钢温降大、单炉周期长、生产组织难度大,三渣法操作过程复杂、终点磷控制优势不明显。双渣法冶炼周期短,通过优化转炉脱磷工艺,实现了采用双渣法冶炼工艺生产超低磷钢,简化了超低磷钢转炉冶炼流程,提高了生产效率。研究了转炉脱磷主要工艺参数,分析得出采用脱碳氧枪喷头时,供氧流量按脱碳吹炼流量的83.5%控制,可达到良好的脱磷效果并减少铁水碳的烧损;脱磷期半钢碳含量不宜控制过低,半钢碳质量分数为3.0%~3.5%时能保证前期的脱磷效果和脱碳期的热量。脱磷期温度控制在1 300~1 350 ℃,脱磷率较高也有利于炉渣熔化。炉渣碱度为1.8~2.2时,可保证较高的脱磷率和化渣效果。一次倒渣量40%以上,脱碳期终点温度按1 590~1 610 ℃控制,终渣FeO质量分数不小于20%,终渣碱度大于6,转炉终点磷质量分数可降低到0.002%以下。采用下渣检测系统和滑板挡渣操作,严格控制下渣量,出钢采用磷含量低的合金,炉后钢水增磷可控制在小于0.000 5%。通过工业试验,实现了铸机成品磷质量分数小于0.002%。  相似文献   

18.
梅钢中磷铁水低磷钢冶炼问题的探讨   总被引:1,自引:0,他引:1  
唐洪乐  汪洪峰  孙晓辉 《钢铁》2008,43(10):34-0
 梅钢铁水中磷含量偏高,冶炼低磷钢种有困难,通过对国内外降磷方法所采用的“铁水炉外预脱磷”、“SRP法”及“转炉双渣法脱磷方法”的比较分析,摸索出适合梅钢自身特点的方法——转炉同炉铁水脱磷炼钢工艺。通过在冶炼中采用前期造渣、中途倒渣的方法,将磷的质量分数降到≤0.01%,满足了生产低磷钢的要求。  相似文献   

19.
宝钢BRP技术的研究与开发   总被引:5,自引:0,他引:5  
康复  陆志新  蒋晓放  钟志敏 《钢铁》2005,40(3):25-28
介绍了宝山钢铁股份公司开发BRP技术的背景,阐述了宝钢BRP技术开发的试验条件和试验结果,分析了脱磷与炉渣碱度、底吹强度、停吹温度的关系,并讨论了底吹、渣中全铁、铁水硅的质量分数对脱磷的影响。宝钢BRP技术的生产实绩表明,脱磷炉的脱磷率达到84%以上,磷的质量分数平均低于0 015%,脱碳炉的脱磷率达到58%以上,平均停吹磷的质量分数低于0 006%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号